.Walter Reed Army Institute of Research Tropical Medicine Course *** Laboratory Manual *** **Seventh Edition** 2014 Chief Editor and Course Director: COL Stephen J. Thomas Course Co-Directors MAJ Leonora Dickson MAJ Kristopher Paolino Managing Editor: CPT Lindsey E. Nielsen Sara Gonzalez #### Special Thanks to Our Contributors: Dr. Edgar Rowton Dr. Jack Komisar MAJ Tony Pierson CPT Amanda Roth LTC Jason Richardson Ms. Amy Summers Mr. Juan Mendez **Dosage Selection:** The authors have made every effort to ensure the accuracy of dosages herein. However, it is the responsibility of every provider to consult appropriate information sources to ascertain correct dosages for each clinical situation, especially for new or unfamiliar drugs and procedures. The authors, editors, and the Department of Defense cannot be held responsible for any errors found in this book. **Use of Trade or Brand Names:** Use of trade or brand names in this publication is for illustrative purposes only and does not imply endorsement by the Department of Defense. **Neutral Language:** Unless this publication states otherwise, masculine nouns and pronouns do not refer exclusively to men. CERTAIN PARTS OF THIS PUBLICATION PERTAIN TO COPYRIGHT RESTICTIONS. ALL RIGHTS RESERVED. Permission to use, copy, and distribute this manual or excerpts from this manual is granted provided that (1) the copyright notice above appears in all reproductions; (2) use is for noncommercial educational purposes only; (3) the manual or excerpts are not modified in any way; and (4) no figures or graphic images are used, copied, or distributed separate from the accompanying text. Requests beyond that scope should be directed to http://wrair-www.armv.mil/OtherServices TropicalMedicine.aspx The opinions expressed herein are those of the authors and do not necessarily reflect the opinions of the Walter Reed Army Institute of Research, U.S. Army official policy, or opinions of the U.S. Department of the Army The authors and publisher have made every effort to provide an accurate text. However, they shall not be held responsible for problems arising from errors or omissions, or from misunderstandings on the part of the reader. #### **DEPARTMENT OF THE ARMY** # Lieutenant General Patricia D. Horoho THE SURGEON GENERAL AND COMMANDING GENERAL U.S. ARMY MEDICAL COMMAND ## UNITED STATES ARMY MEDICAL RESEARCH AND MATERIEL COMMAND Major General Joseph Caravalho Jr. COMMANDER #### WALTER REED ARMY INSTITUTE OF RESEARCH Colonel Steven E. Braverman, MC DIRECTOR AND COMMANDANT This manual is also available online at: http://wrair-www.army.mil/TropMed ## Preface to the Seventh Edition The Walter Reed Army Institute of Research (WRAIR) was established by War Department General Orders No. 51, dated 24 Jan 1893 as the Army Medical School. Today, the WRAIR is part of the U.S. Army Medical Research and Materiel Command (USAMRMC), a subordinate command of the U.S. Army's Medical Command (MEDCOM). The WRAIR enterprise includes a laboratory in Silver Spring, MD and subordinate laboratories in Thailand, Kenya, and Germany; a new lab will open in the Republic of Georgia in FY15. The WRAIR is the Department of Defense's largest biomedical research facility and a National resource. Tropical Medicine education initiatives began at the Army Medical School in July 1941 under BG Russell Callendar, Commandant, The course ran for 30 days and consisted of didactic and laboratory sessions, very similar to today's course. Over the next fifty years, the course changed in name and scope but maintained its dedication to educating military medical providers and medical support personnel in the tenets of tropical medicine and infectious diseases. In 1954, the Institute executed the, "Advanced Military Preventive Medicine Course," which was eventually supplanted in December 1966 by the, "Global Medicine Course." This 12 week course was divided into four weeks of "Epidemiology and Applied Biostatistics", three weeks of "Ecology and Disease", and five weeks of "Tropical Medicine". In February of 1972, the Global Medicine Course was split into a five week course called, "Military Medical Ecology," and a six week course called the, "Tropical Medicine Course." The first Tropical Medicine Course was offered in July and August of 1972 and was attended by 11 medical officers and four clinical clerks. The course endured until 1993. The aggressive operational tempo during the wars in Afghanistan and Iraq, the increasing numbers and sustainment of operations in austere environments, and the formation of AFRICOM drove increasing educational needs and requirements of Special Operations Command (SOCOM) medical providers and medical support personnel. In response, the WRAIR developed a one week course dedicated to teaching students how to recognize, diagnose, and manage infectious diseases common in the deployed OCONUS environment. A curriculum was developed focusing on COCOM-specific disease entities which adversely impact military operations and cause morbidity and mortality in U.S. Service Members. Students represent a broad spectrum of medical providers (physicians, physician assistants, nurses, nurse practitioners, and combat medics) and medical support personnel (entomologists, preventive medicine personnel, and environmental safety officers) from both military and non-military communities. Student diversity strengthens today's course. This manual is intended to supplement the information provided during class and lab activities. It is not exhaustive but focused on high value information. Although course staff and faculty frequently update the content of the manual, the field of infectious diseases and tropical medicine is dynamic and new information becomes available with great frequency. The course faculty encourages you to explore the scientific literature for specific topics of interest. The course is designed to provide the student with tools he or she requires to protect and sustain the health of those who serve our Nation through military and government service. The course directors seek continuous improvement and rely on our student's clear and direct feedback on what activities should continue and which require improvement or modification. Please support the course with your opinions and perspectives. Thank you for your interest in infectious diseases and tropical medicine. I hope the course meets your expectations and positively influences how you practice medicine or otherwise support the same. COL Stephen J. Thomas, MD Deputy Commander for Operations, WRAIR Infectious Diseases Consultant to the Surgeon General Course Director #### Acknowledgements The information in this manual represents over 70 years of discovery and education. Significant contributors over this time include but are not limited to: Lieutenant Colonel Thomas J. Steinbach, Dr. Edgar Rowton, Dr. Harold Harlan, Lieutenant Colonel Jason H. Richardson, and Mr. Juan Mendez. We are grateful to Ms. Natalie Slepski and Ms. Sara Gonzalez's diligence and dedication to the course and this publication. Past edition contributors include but are not limited to: Lieutenant Colonel Peter V. Perkins, Lieutenant Colonel Phillip G. Lawyer, Lieutenant Colonel Wilbur Milhous, Dr. Jacob L. Frenkel, and Dr. Claudia F. Golenda. The contributions of others not named are not forgotten. ## Table of Contents | List of Abbreviations and Acronyms | 9 | |---|----| | Lecture Notes (Clinical Synopsis) | 11 | | Leishmaniasis | 40 | | Transport/Shipping of Parasites & Tissue | 44 | | Slide Preparation and Staining | 48 | | Slide Reading | 51 | | rK39 Serum Test Strip Procedure | 53 | | Package Literature | 54 | | Malaria | 56 | | Making a Thick and Thin Smear | 56 | | Staining the Smear (Rapid Method) | 59 | | Examining the Slides Under the Microscope | 59 | | Procedure to Focus the Microscope | 60 | | Malaria Pictures and Diagrams | 62 | | Binax Instructions | 76 | | Rapid Diagnostic Tests for Malaria | 78 | | Rapid Tests and Stains | 89 | | Ova a | nd Parasites | 114 | |-------|---|-----| | | Flatworms | 114 | | | Roundworms | 124 | | | Protozoans | 130 | | Enton | nology Review | 137 | | | Mosquito-borne Diseases | 137 | | | Sand Fly-borne Diseases | 147 | | | Tick-borne Diseases | 149 | | | Vector Surveillance and Suppression | 149 | | | Vector Management (Control) | 150 | | | Point Source Threats (e.g., Insect Bites) | 153 | | Patho | logy | 165 | | | Preservation of a Stool Specimen | 167 | | | Examination of Stool Specimen | 168 | | | Capillary Puncture for Blood Parasites | 171 | | Apper | ndices | 170 | | | Medical Teleconsultation | 170 | | | Taking Pictures Through the Microscope | 173 | | | Useful Websites | 174 | #### List of Abbreviations and Acronyms CAP College of American Pathologists CDC Centers for Disease Control and Prevention CFR Code of Federal Regulations CHCS Composite Health Care System CHIKV Chikungunya Virus CL Cutaneous Leishmaniasis CLIA Clinical Laboratory Improvement Amendments CONUS Continental United States DENV Dengue Virus DHF Dengue Hemorrhagic Fever DSS Dengue Shock Syndrome DOD Department of Defense IATA International Air Transport Association ICAO International Civil Aviation Organization IND Investigational New Drug JE Japanese encephalitis LDL Leishmania Diagnostic Laboratory LF Lymphatic Filariasis MCL Mucocutaneous Leishmaniasis NCMI National Center for Medical Intelligence PBSS Phosphate Buffered Saline Solution OCONUS Outside the Continental United States OTSG Office of The Surgeon General POC Point of Contact SOP Standard Operating Procedure USAPHC United States Army Public Health Command USUHS Uniformed Services University of the Health Sciences VL Visceral Leishmaniasis WHO World Health Organization WRAIR Walter Reed Army Institute of Research
WRNMMC Walter Reed National Military Medical Center # Lecture Notes (Clinical Synopsis) The next several pages of this manual are clinical synopsis for many tropical diseases. The intent is that the most important points are summarized in a succinct fashion to allow for a quick reference to the lectures given during the course. These summaries are intended to be 1-2 pages in length and serve as quick references only. For more information about the topic we recommend reviewing the lecture slides provided to you during the course. Of course, these short notes do not replace the lectures or the other more detailed references. These lecture notes are organized in this similar manner: Introduction **Clinical Syndrome** **Diagnosis** **Treatment** **Epidemiology** Prevention #### Malaria Malaria is a mosquito-borne infectious disease of humans caused by eukaryotic protists of the genus *Plasmodium*. ** Four species of Plasmodium can infect and be transmitted by humans. Severe disease is largely caused by <u>Plasmodium</u> <u>falciparum</u>. Malaria caused by <u>Plasmodium vivax</u>, <u>Plasmodium ovale</u> and <u>Plasmodium malariae</u> is generally a milder disease that is rarely fatal. A fifth species, <u>Plasmodium knowlesi</u>, is a zoonosis that causes malaria in macaques but can also infect humans. **Anopheles is the principal vector for malaria (most common species of mosquito to transmit malaria). Clinical Syndrome: Uncomplicated → fever, non-specific flulike symptoms, GI (nausea, diarrhea, vomiting); Severe (usually caused by *P. falciparum*) → prostration, mental status changes leading to unconsciousness (cerebral malaria), acute respiratory distress syndrome. **Diagnosis:** Malaria blood film – thick and thin blood smears, rapid diagnostic tests (RDT's) #### Treatment: - Artemether/lumefantrine 1 tablet; 3-day treatment schedule with a total of 6 oral doses initial dose at Dx followed by the 2nd dose 8 hours later, then 1 dose po bid for the following 2 days. Adult: 4 tablets per dose. - Atovaquone/proguanil 1 adult tablet; a 3 day treatment schedule: 4 tablets per dose daily for 3 consecutive days. - Quinine sulfate/doxycycline Quinine: 8 mg base/kg, doxy: 100mg tablets; Quinine: 2 caplets should be sufficient for adult dosing, doxy: 1 tablet q12 hours for 7 days. - *Mefloquine* One tablet; 3 tablets at Dx and 2 tablets in 6-12 hours - Severe Malaria treatment options → Quinidine gluconate plus doxy – 6.25 base/kg loading dose IV over 1-2 hours, then 0.0125 mg base/kg/min continuous infusion for at least 24 hours. Doxy: same as above, if patient not able to take oral medication, give 100 mg IV every 12 hours and then switch to oral doxy as soon as patient can take oral meds. For IV use, avoid rapid administration. Treatment course 7 days. - IV artesunate- must be done under IND with instructions for preparation and administration by CDC only for hospitalized patients within the US. - *P. vivax and ovale treatment options* → Chloroquine: 600 mg base po immediately, followed by 300 mg base po at 6, 24, and 48 hours. AND Primaquine... should test for G6PD deficiency before starting primaquine, (If G6PD negative or low levels (<6%) primaguine causes hemolysis. Prescribe **30 mg** base which equals 2 tablets qd x 14 days. **Epidemiology:** Malaria causes approximately 250 million cases of fever and approximately one million deaths annually. It is prominent in tropical and sub-tropical regions such as Sub-Sahara Africa, Asia, and the Americas and more prevalent in rural regions as opposed to urban. This disease is prevalent in these regions due to the warm, consistent temperatures and moisture. **Prevention:** Situational awareness (pre-travel preparation, assess malaria risk in geographical location, urban vs. rural), Avoid mosquito bites (personal protection, DEET, insecticide treated nets), compliance with chemoprophylaxis, seek early diagnosis and treatment #### Leishmaniasis Leishmaniasis is a disease caused by protozoan parasites that belong to the genus *Leishmania* and is transmitted by the bite of certain species of <u>sand fly</u> (subfamily Phlebotominae). - ** <u>Cutaneous leishmaniasis</u> is the most common form of leishmaniasis. <u>Visceral leishmaniasis</u> is a severe form in which the parasites have migrated to vital organs. Note that there are other forms not covered in this short review. - Cutaneous: the most common form which causes a sore at the bite site, which heals anywhere from months to a year, leaving depressed, atrophic scar. - Visceral: the most serious form of Leishmaniasis, and can be fatal. #### **Clinical Syndromes:** Cutaneous → Symptoms are primarily skin sores weeks to months after person has been bitten. Other symptoms can include → fever, damage to the spleen and liver, and anemia. Visceral → fever, wasting (extreme weight loss), splenomegaly (large spleen – left side), hepatomegaly (large liver – right side), pancytopenia (bone marrow depressed) **Diagnosis**: Clinical diagnosis, parasitologic diagnosis (amastigotes in a smear, promastigotes in culture, PCR assessment for *DNA*), immunological diagnosis (serology rK30 dipstick assay) *Cutaneous* → biopsy/aspiration/scraping, touch prep, PCR, culture Visceral → biopsy of bone marrow or spleen, touch prep, PCR, culture, immunologic: rK39 test **Treatment**: Cutaneous Leish → - Pentostam 20 mg/kg IV x 10-20 days Visceral Leish → - Ambisome (liposomal amphotericin B) 3 mg/kg on days 1-5, 14 & 21 or - Pentostam 20 mg/kg IV x 28 days **Epidemiology**: Leishmaniasis can be transmitted in many tropical and sub-tropical countries, mostly found in developing worlds. Leishmaniasis is found from rainforests in Central and South America to deserts in West Asia and the Middle East. It affects as many as 12 million people worldwide, with 1.5-2 million new cases each year. **Prevention**: personal protective measures, vector control, reservoir control, immunoprophylaxis #### **Dengue** Dengue also known as "**breakbone fever**" is an infectious tropical disease caused by the dengue virus. It is transmitted by mosquitoes within the *Aedes* genus (principally *A. aegypti; A. albopictus* also a vector) and is not transmitted person-to-person. **Infection with one of <u>four serotypes</u> of dengue virus: -DEN1, DEN2, DEN3, DEN4 **Clinical Syndrome**: People infected with dengue are commonly asymptomatic or have only mild symptoms such as an uncomplicated fever. The incubation period ranges from 3–14 days, but most often it is 4–7 days. Symptomatic dengue clinical syndromes → Dengue fever (DF), Dengue hemorrhagic fever (DHF), and Dengue shock syndrome (DSS) #### DF (day 1) - Abrupt onset high fever (~105 degrees) *5-7 days fever (biphasic) - Rash (early flushlike rash may be placed by a macular/morbilliform rash. Late petechial). - Chills, Arthralgias - Severe headache, retro-orbital pain - Lumbosacral pain #### DF (day 2) - Severe muscle, joint pain, Lassitude - Nausea, vomiting - Epistaxis - PE: fever, generalized <u>rash</u>, relative bradycardia, generalized lymphadenopathy, petechial hemorrhages. #### DHF - Onset as per classical dengue - Damage to blood and lymph vessels - Defervescence followed by - o Ascites, abdominal pain - Pleural effusion - o Hemorrhagic manifestations - Central cyanosis #### Diaphoresis #### DHF (2) - Restlessness - Abdominal pain - Hemorrhage - Tender hepatomegally, splenomegally - Pleural effusions, perirenal effusions, hepatic, splenic, pericardial, peritoneal effusions - Shock - Rapid, weak pulse 0 - o Pulse pressure (<20mmHg) - Unobtainable BP #### DSS - Fluid leak outside of blood vessels (lasts 1-2 days) - Massive hemorrhage - Shock - Cyanosis, massive pleural effusions, ascites - Narrowing pulse pressures - Can be fatal Diagnosis: tests used for the lab diagnosis of primary dengue infection → Viremia (culture), RT-PCR, IgM ELISA, IgG ELISA, PanBio duoCassette, Serum neutralization (PRNT) Treatment: Supportive care, Intensive Care if necessary **Epidemiology:** The incidence of dengue increased 30 fold between 1960 and 2010. The geographical distribution is around the equator with 70% of the total 2.5 billion people living in endemic areas from Asia and the Pacific. In the United States, the rate of dengue infection among those who return from an endemic area with a fever is 2.9-8.0% and it is the second most common infection after malaria to be diagnosed in this group **Prevention**: Reduce exposure to vector by use of personal protective measures (DEET, permethrin treated uniforms, screened windows, mosquito netting) and local vector control (eliminate breeding sites, insecticides). #### HIV Human immunodeficiency virus (HIV) is a retrovirus that can cause acquired immunodeficiency syndrome (AIDS), a condition in humans in which progressive failure of the immune system allows life-threatening opportunistic infections to thrive. Infection with HIV occurs by the transfer of blood, semen, vaginal fluid, pre-ejaculate, or breast milk. Clinical Syndrome: The stages of HIV infection are acute infection (also known as primary infection), latency and AIDS. Acute infection lasts for several weeks and may include symptoms such as fever, lymphadenopathy (swollen lymph nodes), pharyngitis (sore throat), rash, myalgia (muscle pain), malaise, and mouth and esophageal sores. The latency stage involves few or no symptoms and can last anywhere from two weeks to twenty years or more, depending on the individual. AIDS, the final stage of HIV infection, is defined by low CD4+ T cell counts (fewer than 200 per microliter), various opportunistic infections, cancers and other conditions. **Diagnosis:** confirmatory testing is performed with a screening test, usually enzyme-linked immunosorbent assay (ELISA), followed by Western Blot. **Treatment:** Treatment consists of highly active antiretroviral therapy, or HAART. Current HAART options are combinations (or "cocktails") consisting of at least three drugs belonging to at
least two types, or "classes," of antiretroviral agents. **Epidemiology:** Sub-Saharan Africa remains by far the worst-affected region, with an estimated 22.5 million people currently living with HIV (67% of the global total), 1.3 million deaths (72% of the global total) and 1.8 million new infections (69% of the global total). However, the number of new infections declined by 19% across the region between 2001 and 2009, and by more than 25% in 22 sub-Saharan African countries during this period. Asia is the second-worst affected region, with 4.9 million people living with HIV (15% of the global total). #### **Rickettsial Diseases** Rickettsial Diseases are caused by members of the genus Rickettsia (exception: agent of scrub typhus has recently been given status of its own genus, Orientia). Coxiella (agent of Q fever) and agents of Ehrlichiosis are close relatives of Rickettsia. Most rickettsial diseases are vectored by arthropods (mostly ticks). Rickettsia = small, obligate intracellular bacteria very difficult to grow in culture By convention, divided into 2 groups: **Spotted Fever Group** – *R. rickettsii, R. conorii,* R. australis, R sibirica, R. akari, R. africae and others **Typhus Group** – *R. prowazekii, R. typhi,* Orientia tsutusgamushi **Epidemiology** – All are arthropod-borne diseases often having a zoonotic (mammalian) reservoir. R. prowazekii (epidemic typhus) is an exception in that humans are the only reservoir. All rickettsioses are vectored by members of the order Acari (ticks and mites), except R. prowazekii (body louse) and R. typhii (flea). All except R. prowazekii have peak transmission in springsummer when vectors and reservoirs are more abundant and active. Many are transmitted transovarially in vector, thus arthropods can be main reservoir as well. **Pathophysiology** – After inoculation by an infected arthropod, Rickettsia disseminate to endothelial cells where they replicate and cause a systemic vasculitis. This underlying pathology is consistent throughout all rickettsioses, although severity and specific organ dysfunction varies. Clinical Syndrome: The classic triad of fever, headache and rash should always trigger suspicion for rickettsial infection, especially in the proper epidemiologic setting. Many rickettsioses have an eschar (tache noir) at the site of initial inoculation. All begin with an influenza-like syndrome with high fever, headache, myalgia, malaise. Rash tends to be a later manifestation. Elevated liver associated enzymes (ALT, AST, GGT) are common as is leukopenia and thrombocytopenia. **Diagnosis:** There is no reliable method for early diagnosis. Immunofluorescent antigen assay or PCR of skin biopsy of rash is available in reference labs. Otherwise diagnosis is made with acute and convalescent serology and takes weeks. Rapid improvement after doxy is relatively diagnostic. **Treatment**: Doxycycline! Doxycycline! If this is not an option, then appropriate second line therapy varies depending on disease, so you should look it up. Alternative agents include macrolides (esp. azithromycin), chloramphenicol, quinolones, rifamycins. Early treatment is the key to limiting morbidity and mortality – do not wait for confirmation!!! **Prevention:** Must focus on both vector and reservoir control as well as personal protective measures against arthopods. Personnel and clinicians should be aware of risks so that disease can be recognized and quickly treated. #### Specific Rickettsial Diseases of Importance #### **Rocky Mountain Spotted Fever (RMSF)** (a.k.a. North American tick typhus, New World spotted fever, Sao Paolo fever) Agent – R. rickettsii Vector – dog tick (Dermacentor), Amblyomma (S.A.) Reservoir – primarily ticks but also small mammals Distribution – North and South America Features – rash moves extremities => trunk, no eschar #### **Epidemic (Louse-Borne) Typhus** (a.k.a. classic typhus fever) Agent – R. prowazekii Vector – body louse (*Pediculus humanus*) Reservoir - humans Distribution – mostly Old World, common in refugee situations with breakdown in hygiene, more common in cold climates > Features – rash moves trunk => extremities, no eschar, altered mental status common, may recur later as Brill-Zinsser, reservoir in New World may be flying squirrels #### **Endemic (Murine) Typhus** (a.k.a. fleaborne typhus, shop typhus) Agent -R. typhi Vector – Oriental rat flea (*Xenopsylla cheopsis*), other fleas Reservoir – rats, mice, other rodents Distribution – worldwide Features – less severe than classic typhus, no eschar #### **Mediterranean Spotted Fever** (a.k.a. Boutonneuse fever, Marseilles fever) Agent – R. conorii Vector – brown dog tick and various ticks Reservoir – ticks, dog, rabbit, rodents Distribution – Mediterranean basin, North and Central Africa, Middle East Features- usually single tache noir #### **South African Tick Typhus** Agent – *R. africae* (some overlap with *conorii* infections) Vector - Amblyomma ticks Reservoir – ticks, large mammals (cattle, rhino) Distribution – sub-Saharan Africa Features – frequently multiple tache noir #### **Scrub Typhus** (a.k.a. miteborne typhus, Tsutsugamushi disease) Agent – O. tsutsugamushi Vector – trombiculid mite Reservoir – mites Distribution – East and S.E. Asia, in pockets west to #### Pakistan Features – eschar generally in groin or axilla, frequently associated with adenopathy, can cause severe pneumonia, short-lived immunity Multiple other rickettsial diseases or regional importance – you name a place and it likely has its own spotted fever! #### **O** Fever A zoonotic infection with the rickettsial organism Coxiella burnetti causing an acute (or sometimes chronic) febrile illness. The disease was first described by E. H. Derick, who in 1935 investigated an outbreak of a febrile illness in meat packers in Queensland, Australia. He used the term Q (for query) fever to describe the illness, thus coining its present name. **Epidemiology:** Common commensal organism of arthropods, fish, birds, various mammals (including rodents and marsupials); most important reservoirs are domestic ungulates (sheep, cows, goats); Ticks or other arthropods may be important in maintaining enzootic cycles; C. burnetti shed in feces, urine, milk and especially in birth products (109 organsims/gram); Extremely infectious – inoculation of **one** organism can cause human infection; Very hardy – has spore form that can survive in environment for months to years; Inoculation generally occurs in lungs by aerosol route; At risk = veterinarians, farmers (of livestock), abattoir workers and other animal handlers; can also result from indirect exposure, due to organism's high infectivity. Examples: persons handling contaminated laundry or persons in room with infected parturient cat. Clinical Syndrome: Self-limited febrile illness → Most common syndrome with mild to relatively severe illness of fever, headache and constitutional symptoms lasting 5-10 days (incubation period 14-39 days), Can occasionally cause prolonged fever (> 2 weeks), pneumonia → next most frequent syndrome, ranges from incidental infiltrate on x-ray to severe multi-lobar pneumonia, often accompanied by GI symptoms. **Diagnosis:** Acute diagnosis is clinical – serology usually used to confirm (or diagnose) later, serologic dx generally requires paired acute/convalescent sera, single complement fixation antibody (CF) titer $\geq 1:16$ or IFA antibody titer $\geq 1:256$ can be used for dx in proper clinical setting, Common lab findings → variable WBC (low or high), mild thrombocytopenia, mild liver-associated enzyme elevation. Chest x-ray often abnormal even if no clinical symptoms of pneumonia **Treatment**: Acute infection generally resolves without treatment, Treatment of ongoing infection or pneumonia generally tetracyclines, fluroquinolones, macrolides – can combine any of these with rifampin, Treatment of endocarditis or chronic infection may require months-years of a combination of antibiotics #### **Bartonellosis** Bartonella is a genus of small, fastidious, Gram-negative bacteria related to Brucella and more distantly Rickettsia. Of the eight confirmed members of the genus, three are established causes of human disease: B. henselae, B. quintana and B. bacilliformis. These three organisms cause several diseases of relative epidemiologic uniqueness. #### **Pathogenesis** Much of the mechanisms of pathogenesis for Bartonella species remain a mystery. Our present knowledge indicates that most significant effects occur within the vasculature. B. bacilliformis is the only known pathogenic bacterium to invade human erythrocytes. B. quintana, B. henselae and B. bacilliformis have been shown to invade endothelial cells and replicate. All three species elaborate factors that interact with endothelial cells, stimulating proliferation of small vessels. **Diagnosis:** Direct microscopic examination of Giemsa-stained blood smears will reveal abundant intra-erythrocytic Gramnegative bacilli in Oroya fever (B. bacilliformis). Diagnosis of other diseases caused by Bartonella is more difficult. Bartonella are difficult to grow in culture, although modern broth culture techniques (i.e. Bactec) are able to grow the organisms in 7 days (works better at temp of 28°C). PCR is sometimes useful – particularly for *B. henselae*. Serologic tests are relatively reliable but do have problems with cross-reactivity with *Chlamydia* spp. and Coxiella, as well as between Bartonella species. #### Cat Scratch Disease Agent: B. henselae - Commensal bacteria in cats, the majority of young cats have intermittent B. henselae bacteremia without symptoms. **Epidemiology:** Worldwide. Occurs in persons (young >> old) with cat exposure. Cat flea is probable vector. Clinical Manifestations: Single or multiple popular/pustular lesions at inoculation sites. Pronounced regional lymphadenopathy (primarily upper extremities or neck) accompanies. Low-grade fever and constitutional symptoms are not
uncommon. Symptoms resolve in 1-7 weeks. **Complications:** Rare cases of neurologic disease, retinitis, endocarditis. Almost all patients recover without problems, but immunocompromised have more complications. **Treatment:** Controversial – most cases require no therapy (azithromycin has been shown to speed time to resolution, however). Severe cases or those with complications may benefit from doxycycline or a macrolide (with or without rifampin) or a quinolone. #### **Bacillary Angiomatosis** Agent: B. henselae, rarely B. quintana **Epidemiology:** Affects immunocompromised (almost all latestage HIV) exclusively, probably transmitted by cats (through fleas?). Clinical manifestations: A progressive disease of proliferating neo-vascular nodules in skin, soft tissue and internal organs. Fever and constitutional symptoms often accompany disease when internal organs are involved. **Complications:** This is a progressive, fatal disease in the immunocompromised unless treated. **Treatment:** Long term doxycycline or macrolide (potentially for life). Key in HIV is to give HAART to restore immune function. #### **Isolated Culture-Negative Endocarditis** <u>Agent:</u> any *Bartonella*, usually *B. quintana* or *B. henselae* Causes up to 3% of cases of "culture-negative" endocarditis (varies by study) – probably distributed worldwide. Treated with same medications as above. ## <u>Trench Fever (shinbone fever, quintan fever, Volhynia fever, Meuse fever)</u> Agent: B. quintana **Epidemiology:** Disease of poor sanitary conditions worldwide, particularly affected troops in trenches in WWI. Vector is human body louse (*Pediculus humanus*). Recently has been noted in inner-city homeless. Clinical manifestations: Self-limited disease of fever chills and constitutional symptoms. Sometimes accompanied by rash, conjunctivitis, headache, hepatosplenomegaly, vertigo, nystagmus. Usually lasts 4-5 days, often recurs in periodic episodes (anywhere from 3 - 8) of fever that last 5 days (thus quintan fever). Rarely occurs as long febrile illness of 2-6weeks duration. **Complications:** Endocarditis - generally occurs only in homeless and others who are relatively immunocompromised. **Treatment:** doxy or macrolide (+/- rifampin) #### Tropical Bartonellosis (Oroya fever, Andean bartonellosis, Carrion's disease) Agent: B. bacilliformis **Epidemiology:** Confined to foci in Andes. Vector is Phlebotomus sandfly and reservoir probably humans. Disease in native populations mostly in children, but spectacular outbreaks with high mortality can occur in visiting non-native populations (such as deployed troops). Clinical manifestations: A biphasic illness (although each can occur without the other) consisting of an initial, acute, severe febrile illness with anemia associated with high mortality (40-90% fatality untreated) followed by a chronic cutaneous illness of vascular, wartlike nodules called *verruga peruana*. **Remember** – bacilli are visible in RBC's! **Complications:** Most deaths are due to endocarditis, severe anemia or superimposed Salmonella (typhoid) infection. **Treatment:** chloramphenicol (also gets *Salmonella*), doxy, macrolides, penicillins, streptomycin #### **TUBERCULOSIS:** TB is a common and potentially lethal <u>infectious disease</u> caused by various strains of <u>mycobacteria</u>, usually <u>Mycobacterium</u> <u>tuberculosis</u> in humans. It is spread through the air when people who have an active TB infection cough, sneeze, or otherwise transmit their saliva through the air. The main cause of TB, <u>Mycobacterium tuberculosis</u> (MTB), is a small <u>aerobic</u> nonmotile bacillus. #### Active Pulmonary TB → Clinical syndrome: The classic symptoms are a <u>chronic cough</u> with <u>blood-tinged sputum</u>, <u>fever</u>, <u>night sweats</u>, and <u>weight loss</u> (the last giving rise to the formerly prevalent colloquial term "consumption"). **Diagnosis:** TST or IGRA usually positive, chest radiograph may be abnormal, respiratory specimens may be smear or culture positive (3 sputum smears if symptomatic). **Treatment:** "4 for 2 and 2 for 4" INH, RIF, PYR, EMB x 2 months, INH, RIF x 4 months. Prevention: Avoid droplets from active TB case **Infection control:** Administrative controls – Airborne, droplet, nuclei precautions; Engineering controls (ventilation) – isolation, negative pressure rooms; Personal respiratory protection #### **Latent Tuberculosis** → *Clinical Syndrome*: no symptoms or physical findings suggestive of TB disease **Diagnosis:** TST or IGRA positive, negative chest radiograph **Treatment**: Isoniazid for daily for 9 months; (alternate regimens: Isoniazid 2x weekly for 9 months, Isoniazid daily for 6 months, Isoniazid 2x weekly for 6 months, Rifampin daily for 4 months). **Prevention**: Avoid droplets from active TB case #### VIRAL HEMMORHAGIC FEVERS Clinical Syndrome: acute, febrile, multisystemic illness characterized by malaise, myalgia, prostration, and bleeding diathesis *Diagnosis*: clinical pathology → - thrombocytopenia or abnormal platelet function - leucopenia _ - some patients have anemia - most have elevated liver enzymes - Bilirubin is elevated in RVF and YF - Prothrombin time, activated partial thromboplastin time (APTT) and bleeding time are prolonged - Some have disseminated intravascular coagulation (DIC), those that have DIC have elevated d-dimers (FDP's) and decreased fibrinogen #### Lab confirmation → - Gold standard virus isolation from blood, serum or tissue biopsy (BSL-4 lab) - Electron microscopy - Reverse transcription polymerase chain reaction (increasingly important tool). - Rapid ELISA techniques most easily employed - o Antigen capture detection - IgM or IgG antibody capture - Serology on paired sera - Immunohistochemistry (IHC) and in situ hybridization (ISH) of infected tissue - o Formalin-fixed tissue - CDC has developed a skin biopsy procedure for detection of EBOV using IHC #### Prevention/infection control: - Standard precautions in initial assessments - Private room upon initial hospitalization - Barrier precautions - Negative pressure rooms - Airborne precautions if prominent cough, vomiting, diarrhea, hemorrhage #### **BABESIA** Babesia is a protozoan parasite of the blood that causes a hemolytic disease known as <u>Babesiosis</u>. The Babesia parasites in red blood cells closely resemble and are often confused with Malaria parasites. There are several species which can infect humans and all are transmitted by ticks, particularly those of the genus Ixodes. Clinical Syndrome: For 25% of cases in adults and half of cases in children, the disease is asymptomatic or mild with flu-like symptoms. In cases of symptomatic infection, symptoms are characterized by irregular fevers, chills, headaches, general lethargy, pain and malaise. In severe cases, hemolytic anemia, jaundice, shortness of breath, and hemoglobinuria are documented due to the lytic effects of parasitic multiplication **Diagnosis:** Wright-stained or Giemsa-stained peripheral blood smear reveals intraerythrocytic parasites (ring forms with a central pallor) and, rarely, pathognomonic tetrads of budding trophozoites, the so-called <u>Maltese cross</u>. To supplement a blood smear, diagnoses should be made with an indirect fluorescent antibody (IFA) test or PCR. **Treatment**: The standard treatment has been clindamycin and quinine, but this regimen occasionally fails and patients report frequent side effects including tinnitus, decreased hearing, and diarrhea. Because of this, the drug regimen consisting of atovaquone and azithromycin is now the first line of treatment for mild/moderate disease. **Epidemiology:** Of the species to infect humans, *B. microti* is most common in the Americas whereas *B. divergens* is the predominant strain found in Europe. Endemic areas are regions of tick habitat, including the forest regions of the Northeastern United States and temperate regions of Europe. **Prevention**: The most effective public health measure for *Babesia* is avoidance of tick exposure. #### **TRYPANOSOMES** Trypanosoma is a genus of kinetoplastids, a group of unicellular parasitic flagellate protozoa. The majority of species are transmitted by blood-feeding invertebrates, but there are different mechanisms among the varying species. Then in the invertebrate host they are generally found in the intestine and normally occupy the bloodstream or an intracellular environment in the mammalian host. African trypanosomiasis is commonly known as Sleeping Sickness in humans and Nagana (meaning 'loss of spirit' in the Zulu language) in cattle. #### African Trypanosomiasis African Trypanosomiasis is an illness endemic to sub-Saharan Africa. It is caused by the flagellate protozoan Trypanosoma brucei, which exists in 2 morphologically identical subspecies: Trypanosoma brucei rhodesiense (East African or Rhodesian African trypanosomiasis) and *Trypanosoma brucei gambiense* (West African or Gambian African trypanosomiasis). Both of these parasites are transmitted to human hosts by bites of infected tsetse flies (Glossina palpalis transmits T. brucei gambiense and Glossina morsitans transmits T. brucei rhodesiense), which are found only in Africa. Clinical Syndrome: The symptoms of East African trypanosomiasis develop more quickly (starting 1 mo after bite) than the symptoms of West African trypanosomiasis, which can begin months to a year after the first bite. Both types of African trypanosomiasis cause the same generalized symptoms, including intermittent fevers, rash, and lymphadenopathy. Notably, individuals with the East African form are more likely to experience cardiac complications and develop CNS disease more quickly, within weeks to a month. The CNS manifestations of behavioral changes, daytime somnolence, nighttime insomnia, stupor, and coma result in death if untreated **Diagnosis:** A definitive diagnosis of infection requires actual detection of trypanosomes in blood, lymph nodes, CSF, skin
chancre aspirates, or bone marrow. **Treatment:** The type of drug treatment used depends on the type and stage of African trypanosomiasis (sleeping sickness). As treatment medicines are difficult to obtain and can be quite toxic, treatment should only be initiated after consultation with an experienced Infectious Diseases physician. IV Suramin or IM Pentamidine may be indicated for the hemolymphatic stage, while IV Melarsoprol or IV Eflornithine may be indicated for the neurologic stage. **Epidemiology:** The major epidemiology factor in African trypanosomiasis is contact between humans and tsetse flies. #### American Trypanosomiasis (aka Chagas Disease) Chagas disease, also known as American trypanosomiasis, is caused by infection with the protozoan parasite *Trypanosoma cruzi*. New cases of vector-borne *T. cruzi* infection usually occur in persons who live in primitive houses in endemic areas. The living quarters are invaded by infected triatomines (kissing bugs), which become domiciliary. Infected triatomine insects take blood meals from humans and their domestic animals and deposit parasite-laden feces. The parasites are then transmitted via contact with breaks in the skin, mucosal surfaces, or the conjunctivas. Transmission can also occur congenitally or via blood transfusion or organ transplantation. #### Clinical Syndrome: 3 phases of natural disease Acute Phase: In most instances, a specific diagnosis is not made because of the nonspecific nature of the signs and symptoms. Acute Chagas disease carries a mortality rate of less than 5%. Death in the acute phase is typically caused by myocarditis and, less commonly, by meningoencephalitis. <u>Indeterminate Phase:</u> By definition, the indeterminate phase of Chagas disease does not cause any symptoms. Chronic symptomatic Chagas Disease: Ten to 30% of persons with chronic Chagas disease develop clinical manifestations of the disease. The most common and serious problems are cardiac, which are caused by an inflammatory cardiopathy that results from the persistence presence of the parasites in the heart. The gastrointestinal symptoms associated with chronic T cruzi infection typically result from denervation of hollow viscera and consequent dysfunction. Diagnosis: The diagnosis of acute Chagas disease, which includes congenital Chagas disease and reactivation of chronic T cruzi infection in immunosuppressed persons, is based on direct detection of the parasites. In contrast, the diagnosis of chronic infection (indeterminate or chronic symptomatic phases) is generally based on serologic testing, since the low level of circulating parasites precludes microscopic detection. **Treatment:** depends on phase of disease Acute Phase: All patients with acute Chagas disease, including those with congenital infection and those with reactivation of chronic infections due to immunosuppression, should be treated with either benznidazole or nifurtimox. Indeterminate Phase: All children with chronic T cruzi infection should receive either benznidazole or nifurtimox. In contrast, the probability of parasitologic cure with full courses of either drug in adults with long-standing T cruzi infection, most of whom were infected while quite young, is less than 10% Chronic Chagas: The consensus among experts is that persons who have already developed cardiac or gastrointestinal symptoms should not be given antiparasitic treatment. **Prevention:** Avoidance of infected triatomines (kissing bugs). The best way to prevent exposure is not to sleep or dwell in primitive (earthen-walled) houses in endemic areas. #### ENTAMOEBA HISTOLYTICA/DISPAR Entamoeba histolytica is an anaerobic parasitic protozoan, part of the genus Entamoeba. Predominantly infecting humans and other primates, *E. histolytica* is estimated to infect about 50 million people worldwide. Mammals such as dogs and cats can become infected transiently, but are not thought to contribute significantly to transmission. Clinical Syndrome: Symptoms can include fulminating dysentery, bloody diarrhea, weight loss, fatigue, abdominal pain, and amoeboma. The amoeba can actually 'bore' into the intestinal wall, causing lesions and intestinal symptoms, and it may reach the blood stream. From there, it can reach different vital organs of the human body, usually the liver, but sometimes the lungs, brain, spleen, etc. A common outcome of this invasion of tissues is a liver abscess, which can be fatal if untreated. **Diagnosis:** It can be diagnosed by stool samples, but it is important to note that certain other species are impossible to distinguish by microscopy alone. Trophozoites may be seen in a fresh fecal smear and cysts in an ordinary stool sample. ELISA or RIA can also be used. **Treatment:** Metronidazole for the invasive trophozoites plus a lumenal amoebicide for those still in the intestine. Paromomycin (Humatin) is the luminal drug of choice, since Diloxanide furoate (Furamide) is not commercially available in the USA or Canada (being available only from the Centers for Disease Control and Prevention). A direct comparison of efficacy showed that Paromomycin had a higher cure rate. [10] Paromomycin (Humatin) should be used with caution in patients with colitis, as it is both nephrotoxic and ototoxic. Absorption through the damaged wall of the intestinal tract can result in permanent hearing loss and kidney damage. *Recommended dosage: Metronidazole 750 mg tid orally, for 5 to 10 days followed by Paromomycin 30 mg/kg/day orally in 3 equal doses for 5 to 10 days or Diloxanide furoate 500 mg tid orally for 10 days, to eradicate lumenal amoebae and prevent relapse. #### **GIARDIA LAMBLIA** Giardia lamblia is a flagellated protozoan parasite that colonizes and reproduces in the small intestine, causing giardiasis. The giardia parasite attaches to the epithelium by a ventral adhesive disc, and reproduces via binary fission. Giardiasis does not spread via the bloodstream, nor does it spread to other parts of the gastro-intestinal tract, but remains confined to the lumen of the small intestine. Giardia trophozoites absorb their nutrients from the lumen of the small intestine, and are anaerobes. Giardia infects humans, but is also one of the most common parasites infecting cats, dogs, beavers, and birds. Clinical Syndrome: Symptoms of infection include diarrhea, malaise, excessive gas (often flatulence or a foul or sulphurictasting belch, which has been known to be so nauseating in taste that it can cause the infected person to vomit), steatorrhoea (pale, foul smelling, greasy stools), epigastric pain, bloating, nausea, diminished interest in food, possible (but rare) vomiting which is often violent, and weight loss. Pus, mucus and blood are not commonly present in the stool. It usually causes "explosive diarrhea" and while unpleasant, is not fatal. In healthy individuals, the condition is usually self-limiting, although the infection can be prolonged in patients who are immunocompromised. Diagnosis: Accurate diagnosis requires an antigen test or, if that is unavailable, an ova and parasite examination of stool. Multiple stool examinations are recommended, since the cysts and trophozoites are not shed consistently. **Treatment**: Human infection is conventionally treated with metronidazole, tinidazole or nitazoxanide. **Prevention**: Boiling suspect water for one minute is the surest method to make water safe to drink and kill disease-causing microorganisms like Giardia lamblia if in doubt about whether water is infected with the Giardia parasite. #### **HELMINTHS** Helminths are a division of eukaryotic parasites that, unlike external parasites such as lice and fleas, live inside their host. They are worm-like organisms that live and feed off living hosts, receiving nourishment and protection while disrupting their hosts' nutrient absorption, causing weakness and disease. Those that live inside the digestive tract are called intestinal parasites. They can live inside humans as well as other animals. Parasitic worms are categorized into three groups: cestodes (tapeworms), nematodes (roundworms), and trematodes (flukes). #### **CESTODES** (the tapeworms) Cestoda (Cestoidea) is the name given to a class of parasitic flatworms, commonly called tapeworms, of the phylum Platyhelminthes. Its members live in the digestive tract of vertebrates as adults, and often in the bodies of various animals as juveniles. Over a thousand species have been described, and all vertebrate species can be parasitised by at least one species of tapeworm. Several species parasitise humans after being consumed in underprepared meat such as pork (*T. solium*), beef (*T. saginata*), and fish (*Diphyllobothrium* spp.), or in food prepared in conditions of poor hygiene (*Hymenolepis* spp. or *Echinococcus* spp.). #### **FILARIAL WORMS** **Filariasis** is a parasitic disease and is considered an infectious tropical disease, that is caused by thread-like filarial nematodes (roundworms) in the superfamily Filarioidea, also known as "filariae". Clinical Syndrome: The most spectacular symptom of lymphatic filariasis is elephantiasis—edema with thickening of the skin and underlying tissues—which was the first disease discovered to be transmitted by mosquito bites. Elephantiasis results when the parasites lodge in the lymphatic system. Elephantiasis affects mainly the lower extremities, while the ears, mucus membranes, and amputation stumps are affected less frequently. However, different species of filarial worms tend to affect different parts of the body: *Wuchereria bancrofti* can affect the legs, arms, vulva, breasts, and scrotum, while *Brugia timori* rarely affects the genitals. Interestingly, those who develop the chronic stages of elephantiasis are usually amicrofilaraemic, and often have adverse immunological reactions to the microfilaria, as well as the adult worm The subcutaneous worms present with skin rashes, urticarial papules, and arthritis, as well as
hyper- and hypopigmentation macules. Onchocerca volvulus manifests itself in the eyes. causing "river blindness" (onchocerciasis), the second leading cause of blindness in the world Serous cavity filariasis presents with symptoms similar to subcutaneous filariasis, in addition to abdominal pain, because these worms are also deep tissue dwellers. **Diagnosis**: Filariasis is usually diagnosed by identifying microfilariae on Giemsa stained thin and thick blood film smears. using the "gold standard" known as the finger prick test. The finger prick test draws blood from the capillaries of the finger tip; larger veins can be used for blood extraction, but strict windows of the time of day must be observed. Blood must be drawn at appropriate times, which reflect the feeding activities of the vector insects **Treatment**: The recommended treatment for patients outside the United States is albendazole (a broad spectrum anthelmintic) combined with ivermectin. In 2003 the common antibiotic doxycycline was suggested for treating elephantiasis. **Prevention**: The strategy for eliminating transmission of lymphatic filariasis is mass distribution of medicines that kill the microfilariae and stop transmission of the parasite by mosquitoes in endemic communities ### **SCHISTOSOMES** A genus of trematodes, *Schistosoma*, commonly known as bloodflukes and bilharzia, includes flatworms which are responsible for a highly significant parasitic infection of humans by causing the disease schistosomiasis, and are considered by the World Health Organization as the second most important parasitic disease, next only to malaria, with hundreds of millions infected worldwide. Unlike the other trematodes, the schistosomes have separate sexes. Also, unlike the other trematodes infecting humans, the cercarial stage is infective to humans after it is released by the intermediate snail host. Schistosomes do not have a secondary intermediate host. Schistosome cercaria are fork-tailed. Clinical Syndrome: Schistosomiasis often is a chronic illness that can damage internal organs and, in children, impair growth and cognitive development. The urinary form of schistosomiasis is associated with increased risks for bladder cancer in adults. Manifestations include: abdominal pain, cough, diarrhea, Eosinophilia, fever, fatigue, Hepatosplenomegaly (enlargement of both liver and spleen), genital sores, skin symptoms. **Diagnosis**: Microscopic identification of eggs in stool or urine is the most practical method for diagnosis. The stool exam is the more common of the two. **Treatment**: Praziquantel is the treatment of choice for all species of schistosomiasis. Clinical studies show that artemether, which is used as antimalarial treatment, is also active against all 3 major schistosome parasites. **Prevention**: Prevention is best accomplished minimizing water exposure in endemic areas and by eliminating the water-dwelling snails that are the natural reservoir of the disease ## Leishmaniasis Leishmaniasis is a disease caused by an intracellular protozoa parasite, and it affects as many as 12 million people worldwide, with 1.5-2 million new cases each year. The global incidence of leishmaniasis has increased in recent years because of increased international leisure- and military-related travel, human alteration of vector habitats, and concomitant factors that increase susceptibility, such as HIV infection and malnutrition. The recent conflicts in Iraq and Afghanistan have led to approximately 2000 laboratory-confirmed cases (and at least double the number of unconfirmed cases) of cutaneous leishmaniasis and 5 laboratory-confirmed cases of visceral leishmaniasis in American soldiers alone from 2003-2008. In Colombia, the military fighting the *Fuerzas Armadas Revolucionarias de Colombia* (FARC) has seen more than 30,000 cases of leishmaniasis in the last 3 years. Of course, a significantly larger burden of diseases is borne by the local populations of these countries where *Leishmania* species are endemic. In these populations, leishmaniasis contributes greatly to morbidity and mortality. Infection is transmitted by the bite of a sandfly, which is usually one half to one third the size of a mosquito. The clinical spectrum of leishmaniasis ranges from a self-resolving cutaneous ulcer to a mutilating mucocutaneous disease and, depending on the species of *Leishmania* involved, even a lethal systemic illness. Infection with different *Leishmania* species can lead to a remarkably broad range of disease states. Figure 1: Sandfly size comparison (Sandfly on left, Aedes Mosquito in the middle and Anopheles Mosquito on right) The clinical spectrum can range from insignificant pustules to fatal systemic disease. General understanding of this clinical spectrum, although once believed to be quite predictable, continues to evolve as new diagnostic techniques contribute to the elucidation of the variety of clinical manifestations of an infection with even a single species of Leishmania. The particular species associated with certain disease states originally was determined based only on clinical manifestations and location found. In current practice, molecular techniques have shown a very different parasite-to-disease association than was ever appreciated previously. Diagnosis is often difficult because of the small size of the protozoa sequestered within macrophages of the skin, bone marrow, and reticuloendothelial system. Therapy has long been a challenge in the more severe forms of the disease and is made more difficult by the emergence of drug resistance. No effective vaccine for Leishmaniasis is available. ### **Three Clinical Manifestiations of Leishmaniasis:** Localized cutaneous leishmaniasis Mucocutaneous leishmaniasis (Espundia) Visceral leishmaniasis (deadly disease if not treated) http://www.icp.ucl.ac.be/~opperd/parasites/images/WHO1.jpg Figure 2: Cutaneous Leishmaniasis punch biopsy Figure 3: Where to make dermal punch for Leishmaniasis Localized cutaneous leishmaniasis usually manifests as a nonspecific ulcer that can mimic many other infectious and noninfectious skin conditions. The vast majority of cases patients spontaneously with scarring and never come to the attention of clinicians. Even in US troops stationed in Iraq, it is currently felt, by many most closely associated with the disease and familiar with the epidemiology in the military, that less than 25% of all disease ever concerns afflicted soldiers enough to seek medical attention. In both the localized cutaneous and mucocutaneous forms of leishmaniasis, cell-mediated immunity to the parasite is vigorous and organism density in the skin and/or mucosa is low, especially in long-standing disease (although very early in the disease large numbers of the parasites are frequently found). Therefore, growing organisms in culture can be difficult, as can finding them in pathological specimens. Malnourished individuals are at greater risk of acquiring leishmaniasis and respond less well to treatment than those with adequate nutrition. The general consensus is that less than 5% of individuals infected by *Leishmania brasiliensis*, and a smaller percentage of individuals infected by *Leishmania panamensis* and *Leishmania guyanensis*, develop mucosal metastases several months to years after the apparent resolution of cutaneous disease. However, no rigorous studies prove this commonly accepted rate. Without treatment though, even in this small number, destruction of the oral and nasopharyngeal mucosa can be quite devastating and relentless. Symptoms of visceral leishmaniasis can be confused with many other infectious diseases; however, in endemic areas, the typical patient has wasting and presents with massive splenomegaly, pancytopenia, hypergammaglobulinemia, and intermittent fevers (although they are less acutely ill than patients with malaria). A typical lesion of localized cutaneous leishmaniasis begins as an inflammatory papule, which later progresses to an ulcer. This may be associated with sporotrichotic lymphatic spread. In the vast majority of cases, the ulcers heal spontaneously with scarring. Figure 4: Cutaneous Leishmaniasis lesion Figure 5: Cutaneous Leishmaniasis over a tattoo ### <u>Leishmaniasis Patient Information Sheet</u> Soldier completes Part A; Clinical provider completes Part B | PART A – SOLDIER | | | | | | | | | | |--|---|---|--------------|--|---|---|---------------------|---|--| | Patient Name: | | | SSN: | | | Rank/ Service: | | | | | Blood type Weight M | | | | | Ag | | | | | | Unit: Company | | | BN_ | | BDE/BCT_ | | | DIV | | | Date soldier arrived in Theater: in Iraq: | | | | | | | | | | | Places/dates lived in Iraq: (e.g., FOB Murphy, 10 Jun – 15 Jul 03) | | | | | | | | | | | Were rodents present around bivouac area? Y/N Were dogs in the area? Y/N | | | | | | | | | | | | | Windows? | A/C
(Y/N) | Use Bednet
(Always/
Sometimes/Never) | | Use Repellent
(Always/
Sometimes/Never) | | Insect Bites
Per Night?
(<5, 5-20, >20) | | | Vehicle or
Ground | | | | | | | | | | | Tent
Building | | | | \vdash | | | | | | | | | | _ | | | | | | | | | | | | | | | llable to Soldier | | | | Your Use of Insect
Repellents | | Product Was Not
Available to Soldier | | l Not Use | Used Only A
Insect Bite
After how n
bites?
(<5, 5-20, > | es –
nany | Used Every
Night | Used Other
Times
Describe When | | | Bed Net, Treated a
Permethrin | m/ | | | | | | | | | | Bed Net w/o Perm | | |
 | | | | | | | Permethrin Treate
DEET (green tube | | | + | | | | | | | | Commercial Insec | | | + | | | | | | | | Repellent
If Yes, List in Box | | | | | | | | | | | PART B - CLINICAL PROVIDER (Send form with slides and biopsy) | | | | | | | | | | | Lesion Location & #: Duration? | | | | | | | | | | | Antibiotic Tr | eatment | (type/dose/lengt | h): | | | | | | | | Photos Taker | n? N/ | Y If Yes, se | ent to W | RAIR? | N/Y | | | | | | Procedures Done: Scrape Biopsy: N/Y Punch Biopsy: N/Y Touch Prep: N/Y | | | | | | | | | | | | Culture: N/Y Preserved Tissue: N/Y PCR: N/Y | | | | | | | | | | Date Eval: MTF: | | | POC: | | Phone: | | | | | | E-mail(POC): | | | | | | | | | | | Clinician Nar | Clinician Name E-mail (Provider): | | | | | | | | | | (stamp) | | | | | | | | | | | Results: (POS / NEG) Notes: | | | | | | | | | | | For questions regarding Leishmaniasis, contact the Leish Diagnostic Lab (peter.weina@us.army.mil) version 12Apr04 | | | | | | | | | | # Transport or Shipping of Parasites and Tissue ### 1. Procedures ### A. General Regulations to follow - 1) Note that there is a restrictive DOD Directive on the shipment of DOD hazardous materials (guidance for this directive is 49 CFR 173). - 2) Only offer for transportation shipments of hazardous materials, including biomedical materials after approval by a DOD certifying official. - 3) The DOD certifying official must be approved by the commander in writing after receiving appropriate training (i.e. Transport of Biomedical Materials Course from USACHPPM). - 4) Ensure any packages are certified by the DOD certifying official before shipment. DO NOT package or ship any biomedical material without certification. # B. First, determine whether the sample to be shipped is considered an infectious substance or a diagnostic specimen: - 1) Diagnostic specimen: Unknown whether contents are infectious to humans, or shipment for identification. - a) Make shipment in a plain box, removing any biohazard labels. - b) Do not use an airbill for CONUS diagnostic shipments. See local logistician to enter shipment information into shipment computer. - c) For OCONUS diagnostic shipments, use the following instructions. - (1) Mark To: and From: with appropriate addresses on the side of box. - (2) Place both diagnostic and directional arrow stickers on the side of box - (3) Ensure to over pack box with absorbent material. - (4) Ship only a MAXIMUM of 50mls of media per package. - (5) Place FED EX sleeve onto top of box that contains airbill and CDC permit. - (6) Follow these instructions for airbill: - -Fill out To: Receiver's information. - -Fill out From: Lab Director information. - -Ensure account information is correct. - -Check FED EX Priority overnight (4A). - -Check "Yes" for dangerous goods (6). - -Weigh box and note on airbill. - -Make copy of airbill to track pack. - (7) Sign airbill at release signature block. Follow common procedures for completion. - 2) Infectious substance: Known to contain material infectious to humans and concentrated. - a) Make shipment with a 4G/Class 6.2 Isocontainer from Casing Corp. - b) Ensure proper address labels are affixed to box. - (1) From: Physician and facility information (receiving). - (2) To: Lab Director information - c) Enter the Name of responsible party (at top and bottom of box) such as "Name and phone number". - d) Ensure proper labels attached to side of box: - (1) Infectious substance (6) sticker - (2) UN2814 Infectious substance [fill out "Liquid Leishmania (amount in mls)"] - (3) Etiologic agents / biomedical material (6) sticker - e) Ship only a MAXIMUM of 50mls of media per package. - f) Place FED EX sleeve on top of box that contains airbill, CDC permit, and Shipment of dangerous goods form - g) Follow these instructions for airbill: - (1) Fill out To: Receiver's information - (2) Fill out From: Lab Director's information. - (3) Ensure account information is correct. - (4) Check FED EX Priority overnight (4A). - (5) Check "Yes" for dangerous goods (6). - (6) Weigh box and note on airbill. - (7) Make copy of airbill to track package. - h) Sign airbill at release signature block. ### C. Instructions for declaration of dangerous goods. - 1) Write in "Shipper": Lab Director's information. - 2) Write in "Consignee": Receiver's information. - 3) Blot out Cargo Aircraft only and radioactive boxes. - 4) Type everything under nature and quantity of dangerous goods in capital letters. - a) Under proper shipping name: "INFECTIOUS SUBSTANCE AFFECTING HUMANS (LIQUID) LEISHMANIA" - b) Class or division: "6.2" - c) UN or ID No .: "UN2814" - d) Under quantity and type of packaging: 4G, # of flasks contained, amount of total media in mls. - e) Packing instructions: "602" - f) Under additional handling information: "FOLLOW DIRECTIONS ON CONTAINER PRIOR ARRANGEMENTS AS REQUIRED BY THE IATA DANGEROUS GOODS REGULATION 1.3.3.1 HAVE BEEN MADE IN ACCORDANCE WITH ICAO AND IATA REGULATIONS" - g) Under emergency Telephone # place local contact, such as: 301-319-9956 / 9497, pager 301 369-5413, fax 301-319-7360 - h) Fill out signature block with sender's information. - i) Sign signature block. ### **D.** Common Procedures 1) Wrap in brown paper and tape up final package. Attach the final FED EX sleeve to the top of box. - 2) Ensure the following: - a) Sign release signature. - b) Make copy of airbill to track package. - c) Give top copy of airbill goes to comptroller for accountability. - d) Bring box to shipping section. - e) Place box in FED EX shipping area. - f) Log in / fill out shipment notice form (POC "name and telephone"). ### **Slide Preparation and Staining** ### 1. Materials and Equipment ### A. Slide preparation - 1) Slides - 2) Cover slips - 3) Methanol - 4) Plastic disposable pipettes - 5) Cytospin - 6) Timer - 7) Cytospin holder - 8) Pencil, marker - 9) PBSS - 10) Tissue - 11) Disposable alcohol wipes - 12) Small Avery labels ### B. Staining - 1) Methanol - 2) Giemsa / Diff-Quick Solutions 1 & 2 - 3) Forceps - 4) Copeland jars - 5) Water (Analytical type I reagent grade water) - 6) Water (Sigma® sterile water) - 7) Microscope - 8) Paper towels - 9) Permount - 10) Immersion oil - 11) Slide box - 12) Filters (0.22μm) ### 2. Procedures ### A. Slide Preparation - 1) Direct Slide Preparation - a) Clean slide with alcohol wipe. With forceps grasp the tissue and make impression on the slide by either making a dabbing or circular motion on the slides with the tissue (let it dry). - b) Place a drop of mixture on the slide and smear the slide, if a tissue/PBSS mixture. Air dry slide before use. ### 2) Using Cytospin - a) Put 2 3 drops of ground tissue on each slide and place in separate cytospin holder. Ensure an equal amount is placed in on each slide. - b) Spin for 3 min @ 800 rpm. Repeat if necessary. - c) Remove slide from holder and let dry for staining. ### B. Staining - 1) Using Diff-Quik - a) Fix slide with methanol. Methanol should cover the entire slide area. Let slide air dry under hood. - b) Filter stain prior to use. - c) Get 4 Copeland jars ready for staining by filling the jars 3/4 full with the following: - (1) Jar 1: Diff-Quick I - (2) Jar 2: type I water - (3) Jar 3: Diff-Quik II - (4) Jar 4: type I water. - d) Grasp the slide and submerge it into Diff-Quik solution I for 45 seconds using forceps. - e) Remove slide and wash gently in jar 2 type I water. - f) Submerge slowly in type I water 3 times. - g) Damp slide edge on paper towel. - h) Submerge slide into Diff-Quik solution II for 45 seconds. - i) Remove slide and wash gently in jar 4, type I water. - j) Submerge slowly in type I water 3 times. - k) Let slide air dry. - 2) Giemsa Stain - a) Fix slide in methanol and let air dry. - b) Prepare a 30% concentration of Giemsa in Sigma® water using 50 ml conical tube. Filter 30% Giemsa solution prior to use. - c) Pour 30% Giemsa solution on slides and leave slide flooded with solution for 30 minutes - d) Wash slide thoroughly with type I water. - e) Let slide air dry under hood. - f) Read. ### **Slide Reading** ### 1. Materials and Equipment - A. Immersion oil - B. Cover slip - C. Smeared and stained slide - D. Microscope - E. Permount with 10% xylem - F. Control positive slide ### 2. Procedures - A. Place slide on microscope after airdrying under hood. - B. Use an oil immersion lens in order to view the slides - C. Complete a comprehensive review of the slide in order to visualize any amastigotes (Leishmania parasites which lack a tail) on the slide. Figure 6: Amastigotes on the Giemsa stained slide - D. Use a positive control slide if necessary to confirm visualization of amastigotes. - E. Write a report with the technician's impressions on the slide quality and slide result. Put this with the patient file. - F. Label the slides and slide box with the local control number, date, patient name, and the technician's initials. - G. Bring the slides to the Lab Director for confirmation. ### rK39 Serum Test Strip ### The InBios slide with the Kalazar DetectTM test InBios International, Inc. Phone: 206-344-5821 Toll Free: 1-866-INBIOS1 Web: www.inbios.com Email: info@inbios.com ### 1. Procedures - A. Follow product insert from INBIOS for rK39 strip test for visceral leishmaniasis. - B. Record results in notes section of LDL Accession spreadsheet and notify Lab Director of results. - C. Follow these procedures for archiving patient serum - 1) Fully aliquot positive serums into as many 1.8ml cryotubes are needed and labeled by local control number. - 2) Aliquot negative serums once and properly label by local control number. - 3) Store all serum aliquots in chronological order. ### Kalazar Detect™ Rapid Test for the Detection of Visceral Leishmaniasis Antibody in Human Serum ### Intended Use The Kalazar Detect™ Test for Visceral Leishmaniasis (VL) is a rapid immunochromatographic strip assay for the qualitative detection of antibodies to members of L. donovani in human serum. The assay is for the aid in the presumptive
diagnosis of VL. This test strip is intended for professional in vitro diagnostic use only. It is not intended for use in blood donor centers or blood component manufacturers ### Summary and Explanation VL is a severe disease with high mortality, endemic in 88 countries including 17 developed nations (1,2). A serious problem in much of the world including Brazil, China, East Africa, India and areas of the Middle East, leishmaniasis is also endemic in the Mediterranean region including southern France, Italy, Greece, Spain, Portugal and Northern Africa. In areas where leishmaniasis is endemic, recent migration patterns of people, vectors (sandfly) and reservoirs (dogs) have led to the urbanization of VL (3). In Southern Europe, VL has become the leading opportunistic infection in AIDS patients (4,13). VL is caused by members of the Leishmania donovani complex and canines have been identified as the major reservoir for transmission (5-8). Serodiagnosis has been widely utilized to establish infection because antileishmanial antibody titers are high during acute disease. The preferred method of diagnosis in a laboratory situation is by ELISA, although fluorescent antibody (IFAT) or direct agglutination tests (DAT), both utilizing whole parasites, are still widely used (9-11). These tests are highly cross-reactive with trypanosomes and mycobacteria. In addition, the whole parasite preparations used are unstable and variable in quality. This rapid assay is for the qualitative determination of antibodies to a recombinant antigen specific for Visceral Leishmaniasis (12) caused by parasite members of the L. donovani complex ### Principle The Kalazar Detect™ Test for VL is a qualitative, membrane based immunoassay for the detection of antibodies to Visceral Leishmaniasis in human serum. The membrane is pre-coated with rK39 on the test line region and chicken anti-protein A on the control line region, During testing, the serum sample reacts with the dye conjugate (protein A-colloidal gold conjugate) which has been pre-coated in the test device The mixture then migrates upward on the membrane chromatographically by capillary action to react with recombinant VL antigen on the membrane and generates a red line. Presence of this red line indicates a positive result, while its absence indicates a negative result. Regardless of the presence of antibody to rK39, as the mixture continues to migrate across the membrane to the immobilized chicken anti-protein A region, a red line at the control line region will always appear. The presence of this red line serves as verification for sufficient sample volume and proper flow and as a control for the reagents ### Precautions - For professional in vitro diagnostic use only. Do not use after expiration date - Handle all sera and kits used as if they contain infectious agents. Observe established precautions against microbiological hazards while performing all procedures and follow the standard procedures for proper disposal of sera and used kits - Wear protective clothing, eye protection and disposable gloves while performing the assay. Wash hands thoroughly when finished. Avoid all contact between hands and eyes or mucous membranes during - testina. Do not eat, drink or smoke in the area where the sera and kits are handled. - Chase Buffer contains a preservative; avoid all possible contact with skin and mucous membranes. ### Storage The sealed pouch or vial containing the test strip is designed to be stored at room temperature (20°C-28°C) for the duration of its shelf life. The bottle containing the Chase Buffer is designed to be stored at room temperature for the duration Page 1 of 2 Kalazar Detect Rapid Test, Part No. 900003.9 of its shelf life. Exposure to temperatures over 30°C can impact the performance of the test and should be minimized. The strips should not be frozen. The test should be used within 1 hour after removal from the pouch or vial to prevent exposure to humidity. ### Sera Collection - Human serum should be tested with this test strip. Whole blood should not be used with this test as it may affect ones ability to read the test line correctly due to excessive background. Dilutions of serum in buffer cannot be tested directly. Positive serum can be diluted with disease negative sera. - Remove the serum from the clot of red cells as soon as possible to avoid hemolysis - Test should be performed as soon as possible after sera collection. Do not leave sera at room temperature for prolonged periods. Sera can be refrigerated at 2-8°C up to 3 days. Otherwise sera should be stored below - Bring sera to room temperature prior to testing. The frozen sera must be completely thawed prior to testing. Sera should not be repeatedly frozen - If sera are to be shipped, they should be packed in compliance with Federal Regulations covering transportation of infectious agents ### Kit Contents Kalazar Detect test strip's membrane is pre-coated with a recombinant rK39 on the test line region and chicken anti-protein A on the control line region. The Kit contains the following: - Twenty-five (25) individually pouched Test Strips or twenty-five (25) test strips in a vial with desiccant in the cap. - One (1) vial of Chase Buffer solution. ### Test Procedure - Allow the sera to reach room temperature prior to testing. Remove the Kalazar DetectTM Test for VL from the foil pouch or vial. - 2 - Add 20 μl of sera to the test strip in the area beneath the arrow - 4 Place the test strip into a test tube or well of a 96 well tissue culture plate so that the end of the strip is facing downward as indicated by the arrows on the strip - 5 Add 2-3 drops (150 ul) of the Chase Buffer solution provided with this test kit - Read the results in 10 minutes. It is significant that the background is clear before reading the test, especially when samples have low titer of anti-Leishmanial antibody, and only a weak band appears in the test region (T). Results interpreted after 10 minutes can be misleading Note: Do not test this product with the Chase Buffer solution alone 20 ul of human serum <u>must</u> be added first. Note: If migration of the gold is not observed within 10-15 seconds after the addition of chase buffer, lightly press on sample tape region of dipstick until migration of gold is observed. ### Interpretation of Results ### A Positive Result The test is positive when a control line and test line appear in the test area as shown in Figure 1. A positive result indicates that the Kalazar Detect dipstick detected antibodies to members of L. donovani complex. A faint line is considered a positive result. As a guide for interpretation, the red color in the test region will vary depending on the concentration of anti-Leishmanial antibodies present The test line for "weakly positive" sera samples may show results between a weak positive red line to a faintly red, almost white background. ("Weakly positive" samples are those with low affinity or low titer antibodies against the recombinant test antigen.) ### Note: Site 2 had a high prevalence of VL patients. ### Limitations - This test will only indicate the presence of antibodies to the recombinant test antigen rK39 in patients with Visceral Leishmaniasis and should not be used as the sole criterion for the diagnosis of Leishmaniasis. This test alone <u>must not</u> be used for any clinical treatment decision. As with all diagnostic tests, all results must be considered with other clinical information available to the doctor. - If the result is negative and clinical symptoms persist, additional follow-up testing using other clinical methods is recommended. A negative result does not preclude the possibility of Leishmaniasis. - A false positive result may occur. Confirmatory testing (such as by culture) is advised especially in cases where no symptoms exist. - Do not use serum samples containing any glycerol or other viscous materials. This will decrease the sensitivity of the assay. - Persons with advanced HIV infection or other immunocompromised diseases frequently have low or undetectable anti-Leishmanial antibodies. - This test may yield false positive results with samples from patients having malaria. - The performance of this test has not been evaluated with L. infantum. - Gertain Rheumatoid Factor (RF) sera may produce false positive results when Kalazar Detect is used. ### Reference - WHO. 1990. Control of the Leishmaniases, World Health Organization, Technical Report Series No. 793. - Marsden, P.D. 1984. Rev. Inf. Dis. (6) 736-744. - Jeronimo S.M.B., R.M. Oliveira, S. Mackay, et al. 1994. Trans. R. Soc. Trop. Med. Hyg. 88(4) 368-386. - Berenguer, J., S. Moreno, E. Cercenado, et al. 1989. Ann. Intern. Med. (111) 129-132. - 5. Ashford, D.A., R. Badaro, C. Eulalio, et al. 1993. Am. J. Med. Hyg. 48(1) 1-8. - Neogy, A.B., I. Vouldoukis, A.S. Otamires, et al. 1993. Am. J. Trop. Med. Hyg. (47)772-777. - Evans, T.G., T.A.B. Vasconcelos, J.N. Lima, et al. 1990. Am. J. Trop. Med. Hyg (42)118-123. - Alvar J., R. Molina, M. San Andres, et al. 1994 Ann. Trop. Med. & Parasit. 88(4) 371-8. - 9. Allain, D.S., and I.G. Kagan. 1975. Am. J. Trop. Med. Hyg. (24) 232-236. - Badaro, R., S.G. Reed, and E.M. Carvallio. 1983. Am. J. Trop. Med. Hyg. 32(3) 480-484. - Reed, S.G., W.G. Shreffler, J.M. Burns, et al. 1990. Am. J. Trop. Med. Hyg. 43(6) 632-9. - Burns, J.M., W.G. Shreffler, D.R. Benson, et al. 1993. Proc. Natl. Acad. Sci. (90)775-779. - 13. Houghton, R. et al. 1998. J. Infectious Dis. 177(5) 1339-1344. - Sundar, S. et al. 2002 Annals of Tropical Medicine & Parasitology, Vol. 96, No. 1, 19-23. InBios International, Inc. 562 1° Ave. South, Suite 600 Seattle, WA 98104 USA 206-344-5821 REF INS015 INS020 INS025 P/N 900003.9 EC REP European Authorized Representative CEpartner4U, Esdoornlaan 13, 3951DB Maarn. The Netherlands. Tel.: +31 (0) 6.516.536.26 ### A Negative Result The fest is negative when only the control line appears. A negative result indicates that
the Kalazaro Detect dispstick did not detect antibodies to members of £ donovam complex. No test line is present as in Figure 2. ### An Invalid Result No lines appear at either the control or test line areas. The test is also invalid if no control line appears, but a test line is seen. It is recommended to retest using a new Kalazar Detect^{no} Test for VL and fresh serum. Note: The red color in the test region will vary depending on the concentration of anti-Leishmanial antibodies present. However, neither the quantitative value nor the rate of increase in antibodies can be determined by this qualitative test. Expected Value: In endemic areas, the sensitivity of the Kalazar Detect test is 90% or better. The specificity of the test may vary with geographic location. For example, in India thirteen out of 104 healthy controls showed positive reactivity with the Kalazar Detect Test. ### Performance Characteristics ### Reproducibility Study: The reproducibility of the Kalazar Detect test strip was evaluated at 3 sites using a panel of confirmed VL sera. Positive, low/weak and normal serum samples were used. The samples were coded and tested at each site in triplicate for 3 consecutive days. The results indicate that for each day, the technician scored the test the same. Once the samples were decoded, the reading was in line with the ELISA titer. This data indicates that the reproducibility of the Kalazar Detect Test strip is excellent. ### Interference Studies: Indian Study: Patients with neoplastic disease, viral infection, chronic bronchitis, amebic liver abscess; idiopathic thrombocytopenic purpura, rheumatic heart disease, myeldodysplastic syndrome, myoclorus, leprosy, tuberculosis, syphilis and malaria were tested with the Kalazar Detect test strip for the presence of Leishmania. Only one patient with malaria produced a false positive result. All other patients tested negative. <u>Brazilian Study</u>: Sera from patients with malaria, chagas, tuberculosis, cutaneous leishmaniasis and Hansen disease were tested with the Kolazar Detect test strip for the presence of visceral leishmaniasis. All patient sera tested negative for Leishmania. ### Field Studies The Kalazar DetectTM test for VL was field tested at 2 sites. The table below summarizes the results of these studies. Site 1: Brazilian Study: Kalazar Detect Test Compared to Microscopy | razılı | an Study: Kala | zar Detect Test Com | ipared 1 | to Microscopy | | |--------|----------------|---------------------|----------|---------------|-----| | | | | + | - | | | Ka | lazar Detect | + | 115 | 0 | | | | | - | 13 | 59 | | | | | | 128 | 59 | 187 | | 5e | nsitivity | 89.844 | | Specificity | 100 | | St | d. Error | 2.67 | | | 0 | | 95 | % <i>C</i> I | (82.936, 94.263) | | (92.384, 100) | | Site 2: Indian Study: Kalazar Detect Test Compared to Microscopy | idian Study: Kalaza | r Detect Test C | ompare | to Microscopy | | |---------------------|-----------------|--------|-----------------|--------| | | | + | - | | | Kalazar Detect | • | 225 | 14 | | | | - | 0 | 190 | | | | | 225 | 204 | 429 | | Sensitivity | 100 | | Specificity | 93.137 | | Std. Error | 0 | | | 1.77 | | 95% CT | (97 908 100) | | (88 517 96 054) | | Page 2 of 2 Kalazar Detect Rapid Test, Part No. 900003.9 # Malaria Diagnostics ### **Laboratory Procedures** - **A.** Making a thick and thin smear. (Instructions modified from references 1,2, and 4). - 1. Label two slides with your name and the date. Use a pencil, not a pen. - 2. Wipe the ball of your middle finger with an alcohol pad. - 3. Dry the finger with a Kimwipe. - 4. Using a sterile lancet, puncture the ball of the finger. - 5. Apply gentle pressure to the finger and express the first drop of blood; wipe it away with a Kimwipe. - 6. Working quickly and handling the slides only by the edges, collect the blood as follows: - 7. Apply gentle pressure to the finger and collect a single small drop of blood about 3 mm in diameter on the middle of the slide. This is for the thin film. - 8. Apply further gentle pressure to express more blood, and collect two or three larger drops on the slide, about 1 cm away from the drop intended for the thin film. Wipe the remaining blood off the finger with a Kimwipe. - 9. Use another clean slide as a "spreader", and with the slide with blood resting on a flat, firm surface, touch the edge of a clean slide at a 45-degree angle to the slide with blood just in front of the single drop of blood for the thin film. Slowly draw back the clean slide while securing the sample slide with the forefingers of the other hand. Barely touch the drop of blood and, as the blood spreads laterally along the edge of the clean slide, rapidly and firmly push the clean slide forward, making sure to maintain even contact at all times between the spreader and the surface of the slide, and not stopping until the clean slide leaves the bloody slide. - 10. The thick film: Handling the slides by the edges or a corner, make the blood film by using the corner of the spreader to join the drops of blood, and spread them to in a circular pattern to make an even, thick film. The circular thick film should be about 1 cm in diameter. A thick smear of the proper density is one which, if placed (wet) over newsprint, allows you to barely read the words. Make two thick smears for every patient. - 11. Place the heat gun at high setting about 6-7 inches away from the slides in a rack and dry for about 15 minutes. Never make the slides too hot to touch, otherwise the red cells will be fixed and they will not lyse. - 12. The CDC DPDx Web site says the following about drying: "Insufficiently dried smears (and/or smears that are too thick) can detach from the slides during staining. The risk is increased in smears made with anticoagulated blood. At room temperature, drying can take several hours; 30 minutes is the minimum; in the latter case, handle the smear very delicately during staining. You can accelerate the drying by using a fan or hair dryer (use cool setting). Protect thick smears from hot environments to prevent heat-fixing the smear." Our lab dries thick smears using a slide warmer set at 37°C for 15 minutes, but slide warmers may not be available in the field. Drying procedures will need to be adjusted depending on the heat and humidity of the environment. - 13. From reference 2: "Flies, ants, cockroaches and other insects eat the wet or drying blood and damage the films. Slides should be covered during drying and then stored overnight in an airtight box or desiccator charged with silica gel." # FIGURE A-1. Blood collection for thin or thick blood film 1 Select the finger to puncture (usually the third or fourth finger). 4 Always grasp the slide by its edges. 2 Puncture the side of the ball of the finger. Do not make the puncture too close to the nail bed. 5 To control the size of the blood drop on the slide, touch the finger to the slide from below. If the blood does not well up from the puncture, gently squeeze the finger. ### FIGURE A-2. Preparation of a thin and thick blood film on the same slide ### 1 Touch the blood drop with a clean slide. 4 Take this slide and hold the edge that has the blood drop at an ~45° angle against the surface of the first slide. Wait until the blood completely spreads along the edge of the second slide. 2 Using the corner of another slide, spread the blood drop into the shape of a circle or square of ~1 cm³. 5 While holding the second slide at the same angle, rapidly and smoothly push the slide forward. 3 Gently squeeze the patient's finger again, and touch the edge of a clean slide to the newly formed blood drop. 6 Write the identification number on the slide. Wait until the thick film is completely dry before staining it. ### B. Staining the smears (rapid method) - 1. Mix 1 ml of Giemsa stain with 9 ml of Giemsa buffer to make a 10% solution. - 2. Place the slides on a staining rack face up and separated from one another. - 3. Using a transfer pipette, put stain on top of the smears to cover them completely. - 4. Incubate at room temperature for 10 minutes. - 5. Using a wash bottle, rinse the stain off the slides and into the sink with tap water. Squirt the water onto the label portion of the slide and allow it to wash the stain off the slides. Do not pour the stain off the slides, or it will leave a green scum behind. - 6. Put the slides in a drying rack and place the rack next to a fan to dry. - 7. When the slides are dry, put them into a box or slide holder and bring them to a microscope. <u>Note:</u> Our standard staining method is to use 4% Giemsa stain for 45 minutes. The 10-minute rapid method is said to result in more artifacts, though we find it to be satisfactory. # B. Examining the slides under the microscope (modified from reference 3) - 1. Place the slide on the microscope stage with the specimen directly over the lamp. - 2. Gently place a drop of immersion oil on top of the specimen (or the cover slip). - 3. Make sure the stage is low enough so that you can rotate the oil immersion objective into the light path without having it hit the slide or the oil. - 5. While looking at the microscope from the front or the side (not through the observation eyepieces), slowly raise the stage until the front of the oil immersion objective makes contact with the oil drop. You will see a sudden flash of light when contact is made. - 6. Now, using the fine adjustment knob only, with your left hand, continue to raise the stage until the specimen comes into focus. Meanwhile, with your right hand, use one of the stage control knobs to move the slide rapidly back and forth. This will help you to find the point at which the specimen is in focus. ### Procedure to focus the microscope for both eyes paper towel or tissue). - 1. While looking through the eyepieces of the binocular observation tubes, grasp the binocular tubes with both hands and bring the tubes closer together (or further apart) to fuse the circles of light
into one circle. This sets the interpupillary distance for YOUR eyes. If the viewing tubes have a scale for this setting, memorize the number so that you can easily return to the setting the next time. - 2. Place a specimen on the stage. Using your RIGHT eye, and your right eye only, bring the object into focus. - Now using your left eye and your left eye only, WITHOUT touching the focusing knobs, rotate the knurled ring on the left eyepiece tube to bring the object into focus for your left eye. This procedure adjusts for differences in acuity between your left and right eyes. Blood slides that are well-stained with Giemsa stain will have both red and blue objects. This indicates that the two colored components of the stain, methylene blue and eosin, are visible. ### References - Sutamihardja, A., Chand, K., Wangsamuda, S., and Rogers, W.O. (eds.): *Microscopy Malaria Diagnosis*. Department of Medical Parasitology, USNAMRU2 Jakarta, Indonesia, 2008 - 2. World Health Organization, Geneva: *Basic Malaria Microscopy*. 2nd ed. Part I. Learner's Guide." 2010 - 3. Abramowitz, M.: *Microscope. Basics and Beyond.* Volume 1. Revised Ed. 2003. Olympus America, Melville, N.Y. - 4. Centers for Disease Control and Prevention, CDC-DPDx Web site. ### **Malaria Pictures and Diagrams** Fig. 2. The main stages of the asexual erythrocytic cycle of Plasmodium falciparum. For an animated version: see http://archive.bmn.com/supp/part/bannister.html. Abbreviations: Hb, haemoglobin; MZ, merozoite; PV, parasitophorous vacuole; RBC, red blood cell. See Ref. [29] for further details and illustrations. ## Features to Look for in Slides for Tropical Medicine Course P. falciparum multiply-infected cells double chromatin dots, and headphones P. falciparum rings in thick film, showing a white blood cell P. falciparum growing trophozoite with Maurer's clefts (red dots). This stage is seldom seen in peripheral blood. P. ovale comet form in thin film P. falciparum blister form P. falciparum mature gametocytes in thin film. Note the rounded ends, compared with the pointed ends of immature gametocytes. Left, Q, right of P. ovale in thin film showing fimbriae (top) and James' dots P. falciparum immature gametocytes, which are not normally seen in peripheral blood, shown in thin film. Some of the course slides show these forms. Above: P. vivax trophozoites in thick film showing broken cytoplasm Above left: P. vivax rings compared to P. falciparum rings (above right) in thick film Daisy-head schizonts of P. knowlesi (above) and P. malariae (below) in thin film P. knowlesi gametocytes Left: P. vivax trophozoite in thin film showing Schüffner's dots # P. falciparum in one red cell (4) P. falciparum Several rings headphone-shaped P. falciparum confused with P. falciparum P. vivax ookinete can be gametocyte (6) Some P. falciparum gametocytes have a pink attachment called a Garnham's body. (8) P. falciparum trophozoites and schizonts are rarely seen in peripheral blood except in a very heavy infection (left-to-right: ref. 6, ref. 6, ref. 7) cells (4) Dots, enlarged infected trophozoite, Schüffner's P. vivax ameboid uninfected cells. (5) Infected cells are larger than P. vivax with Schüffner's dots, P. vivax restricted to P. falciparum) (multiple infection is not Triply-infected P. vivax ring showing thin filaments of cytoplasm P. vivax rings in thick film enlarged infected cell (2) P. vivax signet ring with pigment (15) merozoites and clumped P. vivax schizont with about 21 forms are identified as P. vivax rather than P. malariae by their distorted shapes and large size (12) Band forms are usually found in P. malariae, but these band # P. malariae P. malariae band forms (from left to right, references 2, 4, and 2) P. ovale and P. knowlesi (4) schizonts can be seen with (rosette) schizont; similar P. malariae daisy-head P. malariae microgametocyte (left) and macrogametocyte (right) (ref. 4) P. malariae basket trophozoites (left, ref. 10; right, ref. 7) Intensive staining or staining at a pH of about 7.5 occasionally produces pink dots called Ziemann's stippling. They are not seen with standard staining procedures. For a picture of Ziemann's stippling, see "Dots and Stippling" page. # P. ovale multiply-infected RBC P. ovale with P. ovale comet forms (2) P. ovale with fimbriated edge and prominent James' Dots (2) P. ovale microgametocyte (left), and macrogametocyte, right 4 (left, ref. 4; right, ref. 6) P. ovale immature schizonts cells and may show the distorted are usually larger than uninfected P. malariae, but the infected cells P. ovale mature schizonts; some show "rosette" form like those of (left, ref. 4; right, ref. 6) shapes characteristic of P. ovale. P. knowless daisy-head or rosette schizont with about 16 merozoites. P. malariae schizonts have a similar appearance, but they have 6-12 merozoites (14) # Surprising Forms P. vivax blood has been left standing, and they are also seen with other species of Plasmodium. Note that in the picture on the Band forms are usually associated with P. malariae and P. knowlesi. However, they are seen with P. falciparum if left, the band form host cell is enlarged and stippled, which is characteristic of P. ovale, and that in the picture in the P. falciparum of nuclei, >16, indicates P. vivax (3). this cell suggest P. ovale, but the number The oval shape and fimbriated edge of and the enlarged red cell suggest The ameboid form of the cytoplasm parasite before identifying the species of parasite, and to use criteria more definitive than band forms. (7) *falciparum* in the right-hand picture was based on other parasites in the slide. It is important to observe more than one middle, the infected cells are enlarged and distorted, which is Characteristic of P. vivax. The identification of P. you should not base your identification fimbriae. Fimbriae are usually on this feature alone. (7) associated with P. ovale. However, P. falciparum-infected cell with species is P. falciparum (3) Maurer's clefts show that the the presence of P. vivax, but the # Dots and Stippling Not as numerous P. malariae with Ziemann's dots. with basophilic P. falciparum stippling (3) Many authors call these dots "Schüffner's Mulligan's stippling under certain staining conditions. (14) P. knowless shows Sinton and P. falciparum with Maurer's clefts (6) P. ovale trophozoite with James' dots Dots", like the ones in P. vivax. (7) Maurer's clefts (13) P. falciparum with P. falciparum with Maurer's clefts (3) P. vivax with Schüffner's dots (6) P. vivax ameboid ring with Schüffner's dots ## Four Reasons Why Slides From Blood Collected in EDTA Must be Made Within 1 Hour of Blood Draw - 1. P. falciparum can undergo exflagellation. The flagella may - Resemble Borrelia spirochetes. gametocytes. 2. P. falciparum gametocytes may round up and resemble P. malariae - P. Ovale trophozoites 3. P. vivax trophozoites may undergo deformation and resemble - shape of P. falciparum "appliqué" forms which can invade new cells, where they may take on the flattened 4. In addition, P. vivax schizonts can rupture and release merozoites, in mistaken identification. Source: Swierczynski & Gobbo. *Atlas of Human Malaria*. 2007 n. 14 If blood is allowed to sit too long, changes in parasite morphology can result Fig. 434: Left: a *P. malariae* female gametocyte with eccentric nucleus and diffuse pigment; right: an enlarged, round skaped platelet. G. St. organism. G. St. Fig. 436: Pyknotic nuclei in a leukocyte (karyorrhexis and karyolysis) probably due to a prolonged contact with EDTA; these forms should not be confused with merozoites of a mature achizont. G. Sc. Fig. 435! Left: a cluster of spores may be misidentified as a mature achitont of *Pt multariae*. Compare with a mature schizont of *Pt multariae* (right); each merozoite displays visible mudeus and cytoplasm. G. Se. # Geographical Distribution of Human Plasmodia | P. falciparum P. malariae P. ovale P. vivax | P. falciparum | P. malariae | P. ovale | P. vivax | |--|------------------------|-----------------|-------------|------------------| | Central Africa | Predominant | rare | rare | rare | | East Africa | Predominant | rare | rare | Common | | North Africa** | very rare | very rare | Absent | Predominant | | West Africa | Predominant Common | Common | rare | very rare | | Central America | Common | rare | Absent | Predominant | | South America | Common | Common | Absent | Predominant | | Central and southwest Asia | Common | Common | Absent | Predominant | | Southeast Europe | very rare | very rare | Absent | Predominant | | Indian subcontinent | Common | rare | Very rare* | Predominant | | Indochina | Predominant | rare | rare | Common | | Indonesia | Predominant | very rare | Very rare | Common | | Madagascar, Indian Islands | Predominant | rare | rare | Common | | Pacific Islands | Predominant very rare | very rare | rare | Common | | The table above is from the "Atlas of Human Malaria" by G. Swierczynski and M. Gobbo, Az Color | s of Human Malaria" | by G. Swiercz | ynski and M | . Gobbo, Az Colo | | s.r.l., Sirmione, Italy, 2007, p. 6. | | | | | | * The Royal Perth Hospital Web site says that some cases of P. ovale are now being | ite says that some cas | ses of P. ovale | are now be | ing | | identified in the southern states of India | of India | | | | | Human cases of <i>P. knowlesi</i> infection have been reported in Vietnam, Thailand, Myanmar, | ction have been reno | rted in Vietna | m Thailand | No. | peninsular Malaysia, Malaysian Borneo, Singapore, and Palawan Island in the Philippines. ### Picture credits: - 1. Bannister, L. and Mitchell, G.: The ins, outs and roundabouts of malaria. TRENDS Parasitol 19:209-213 (2003). - 2. Royal Perth Hospital. http://www.rph.wa.gov.au/malaria.html - 3. Swierczynski, G. and Gobbo, M.: *Atlas of Human Malaria*. Az Color s.r.l., Sirmione, Italy. 2007. - 4. GideonOnline.
www.GIDEONonline.com. Gideon Informatics, Inc., Los Angeles, CA. - 5. Malaria Diagnostics. Presentation by Gail Stennies, Malaria Epidemiology Branch DPD/NCID/CDC May, 2002. - 6. Bench Aids for the Diagnosis of Human Malaria. 1st ed. World Health Organization, Geneva, 1983. - 7. CDC DPDx http://www.dpd.cdc.gov/dpdx/html/malaria.htm - 8. U.S. Army Medical Department Center & School. Medical Parasitology CD-ROM. Leishmania-Malaria Course. - 9. Field, J.W. *et al.*: *The Microscopical Diagnosis of Human Malaria*. Economy Printers, Kuala Lumpur. 1963. - 10. Photograph by Jack Komisar - 11. Garcia, L.S.: Malaria. Clinics in Laboratory Medicine. 30:93-129 (2010). - 12. *The Microscopic Diagnosis of Malaria*. CD-ROM included with *Basic Malaria Microscopy*. *Part I. Learner's Guide*. 2nd ed. World Health Organization, Geneva, and Centers for Disease Control and Prevention, Atlanta. 2010. - 13. Lontie, M.: *Plasmodia as Seen With the Microscope*. Medisch Centrum Huisarten, Leuven, Belgium. 2001. - 14. Lee, K.-S. *et al.*: Morphological features and differential counts of *Plasmodium knowlesi* parasites in naturally acquired human infections. Malaria J. 2009 8:73. - 15. Sutamihardja, A. *et al.* (eds.): *Microscopy Malaria Diagnosis*. Department of Medical Parasitology, U.S. Navy Medical Research Unit 2, Jakarta, Indonesia, 2003. - 16. Peters, W., and Pasvol, G. *Atlas of Tropical Medicine and Parasitology*. 6th ed. Elsevier Mosby, Edinburgh, 2007. - 17. Bench Aids for the Diagnosis of malaria infections. World Health Organization, Geneva, 2000. ### **Binax Instructions** IMPORTANT: The instructions below are abbreviated and are intended for users familiar with the test procedure. Consult the Product Insert for detailed instructions and performance characteristics. ### TEST PROCEDURE 1) SLOWLY add 15 µl of blood from an EDTA tube (or from an EDTA capillary tube) to the **PURPLE** sample pad. See figure **1** on test device. IMPORTANT: Incorrect addition of sample may lead to an invalid or uninterpretable test. 2) Hold the Reagent A bottle vertically and add two (2) free-falling drops of Reagent A to the white pad immediately below the purple sample pad. Allow the first drop to absorb into the pad before adding the second drop. See figure on test device. 3) Allow the blood sample to run up the full length of the test strip. See figure (3) on test device. NOTE: If blood flow up the test strip appears to stall or is less than halfway up the strip after one minute, add one additional drop of Reagent A to the white pad at the bottom of the test strip. 4) Just before the blood sample reaches the base of the white pad at the top of the test strip, SLOWLY add four (4) free-falling drops of Reagent A to the wash pad on the top left-hand side of the device. See figure (4) on test device. 5) Remove the adhesive liner and close the device. See figure 6 on test device. 6) Read the test result 15 minutes after closing the test device. ### BinaxNOW^{*} Malaria | RESULT INTERPRETATION | | | | | |-----------------------|---------------|--|--|--| | TEST | RESULTS | DESCRIPTION / INTERPRETATION | | | | T1 Positive | T1 | Positive result for P. falciparum (P.f.) | | | | T2 Positive | C
11
12 | Positive result for <i>P. vivax</i> (P.v.) or <i>P. malariae</i> (P.m.) or <i>P. ovale</i> (P.o.) In some cases the appearance of only the T2 Line may indicate a mixed infection with two or more of P.v., P.m., and P.o. | | | | T1 + T2 Positive | T1 T2 | Positive result for <i>P. falciparum</i> (P.f.) In some cases the appearance of both the T1 and T2 Lines may indicate a mixed infection of P.f. with another species. | | | | No T1 or T2 Lines | C 71 72 | Negative result (no malaria antigens were detected) | | | ### Invalid and / or Uninterpretable Test Results The test is invalid if the Control (C) Line does not appear, whether a Test Line(s) is present or not. The test is uninterpretable if the background color hinders reading of the test result at 15 minutes. Binax, Inc. Scarborough, Maine 04074 US: 1-800-637-3717 Outside US: 1-303-530-3888 www.invernessmedicalpd.com ### Rapid Diagnostic Tests for Malaria ### The need for rapid diagnostic tests The spread of resistance to inexpensive antimalarial drugs, such as chloroquine and sulfadoxine/pyrimethamine among malaria parasites has led to a requirement for expensive drugs to treat malaria, such as artemisinin combination therapy. In order to avoid giving expensive antimalarial drugs to people who do not need them, there is an increased need for specific, reliable, and cost-effective diagnostic techniques. Another reason why specific diagnostic techniques are increasingly important is that reductions in malaria transmission mean that a greater proportion of febrile patients have other, frequently fatal, diseases, which need to be distinguished from malaria (MalERA, 2011). Microscopy is considered the "gold standard" for malaria diagnosis, and the Food and Drug Administration requires data from microscopy to support the licensing of new malaria vaccines and drugs (Wongsrichanalai et al., 2007). However, microscopy requires expensive equipment and careful training, and there is a wide variety of levels of competence of microscopists in different settings. Therefore, the development of rapid diagnostic tests, which do not require such training and equipment, and can be done without access to laboratory facilities, has made testing for malaria more widely available, and in some cases more reliable as well. The latest edition (2010) of the WHO Guidelines for the Treatment of Malaria says "Prompt parasitological confirmation by microscopy or alternatively by RDTs is recommended in all patients suspected of malaria before treatment is started. Treatment solely on the basis of clinical suspicion should only be considered when a parasitological diagnosis is not accessible." This laboratory exercise involves the use of a rapid diagnostic test, BinaxNOW (Alere, 30 South Keller Road, Suite 100, Orlando, FL 32810-6297). The National Stock Numbers for this kit are: 6550015548536 for the 12-test kit, and 65500115548731 for the 25-test kit. The BinaxNOW kit was the first (13 June, 2007) FDA product of its kind (rapid diagnostic test suitable for use in the field) that was cleared for detection and identification of the parasites that cause malaria (A rapid kit called QBC [Quantitative Buffy Coat] was cleared in 1989, but it requires a fluorescence microscope or a special microscope attachment and a centrifuge). As of the time of this writing, January 2013, it is still the only product of its kind that has been cleared by the FDA and is available for sale in the United States. BinaxNOW is an immunochromatographic membrane assay (also known as a "dipstick") that uses monoclonal antibodies to detect a *Plasmodium falciparum*-specific antigen and a panmalaria antigen that is shared by all species of *Plasmodium*. During clinical trials, BinaxNOW was tested for its ability to detect *P. falciparum*, *P. vivax*, *P. ovale*, and *P. malariae*. Sufficient data were collected to support quantitative performance claims for *P. falciparum* and *P. vivax*, but not for *P. ovale* or *P. malariae*. *P. knowlesi* was not tested in the initial trials, but a recent paper reports that heavy infections with *P. knowlesi* can be detected with this kit (Garcia 2010). ### The BinaxNOW test kit What follows is a very abbreviated description of the BinaxNOW test kit. It is essential to read the full-length (about 5 pages) package insert before using the test kit. The abbreviated instructions that are given on the 3 ½" by 6 ¾" card that comes with the test kit, which is reproduced in the laboratory manual, are only intended to be used as a memory aid. The BinaxNOW kit detects the presence of *P. falciparum* by incorporating an antibody to histidine-rich protein 2 (HRP 2), a protein that only P. falciparum makes, and an antibody to panmalaria antigen, the enzyme aldolase, to detect P. ovale, P. malariae, P. vivax, and P. knowlesi. The sensitivity of the test varies depending on the species of *Plasmodium* that infects the patient, and a false negative reaction can occur. The package insert gives the expected performance of the test against different concentrations of P. falciparum and P. vivax. According to the package insert, the sensitivity of the test for P. falciparum is more than ten-fold better than the sensitivity for P. vivax. The insert also mentions positive test result against P. malariae and P. ovale, but gives no detailed performance characteristics. The WHO says that the BinaxNOW test is not satisfactory for detecting P. vivax in low and moderate transmission areas (WHO Information Note on Recommended Selection Criteria for Procurement of Malaria Rapid Diagnostic Tests 2010. (www.theglobalfund.org/documents/psm/psm_RDTSelection_Criteria_en/) Tests that are rated by the WHO as satisfactory for the detection of *P. vivax* are described below. Unfortunately, none of these tests are sold in the United States. The sensitivities of rapid diagnostic tests employing the panmalaria antigens pLDH and aldolase for *P. ovale* and *P. malariae* infections are reported to be relatively low (reviewed by Khaimar *et al.*, 2009). The BinaxNOW test is interpreted as follows: A red line at the HRP2 position (marked "T1") is a positive test for *P. falciparum*. A red line at the panmalaria antigen position (T2) can indicate the presence of *P. falciparum*, *P. vivax*, *P. malariae*, *P. ovale*, *P. knowlesi*, or a mixture of species. If only the panmalaria antigen line is red, then the infection is probably due to something other than *P. falciparum* (however, antigenic variants of *P. falciparum* HRP2 or deletions of the
hrp-2 genes may not be recognized by monoclonal antibodies). If both lines are red, then the infection may be *P. falciparum* alone or *P. falciparum* plus another species. In all cases, the control line, "C", must also be positive for a test to be valid. A negative BinaxNOW result for a symptomatic patient must be confirmed by a more sensitive test, such as microscopy, and line at the T2 position needs to be followed up by a different kind of test to identify the species (one or more) that is/are present. The BinaxNOW kit and its reagents are stable from 2°C-37°C (36°F-98.6°F). It is important to use positive controls to test each new shipment or lot to verify that the test is still usable. A clinical laboratory may have its own positive blood samples to use as controls, but if such controls are not available, a positive control kit, catalogue number 665-010, can be purchased from Alere. The National Stock Number for the control kit is 6550015999065. ### Transportation and storage of RDTs The USAID has published and posted online a pamphlet that describes recommended transportation and storage practices for RDTs ("Transporting, Storing, and Handling Malaria Rapid Diagnostic Tests at Central and Peripheral Storage Facilities" http://www.wpro.who.int/NR/rdonlyres/1BBCEFC2-46B3-40F5-9898-7455578145E8/0/MalariaRDT CENTRAL 2009web.pdf) It is a challenge to store RDT kits properly in tropical regions, particularly in areas without electricity. For this reason, a low-technology evaporative cooling box for storage of malaria rapid diagnostic tests and other medical devices in areas without electricity has been described by Chanthap *et al.*(2010), and modifications for construction and use in Afghanistan were described by Mikhail *et al.* (2011). Other rapid diagnostic test kits pair an antibody specific for *P. falciparum* HRP2 with an antibody that recognizes pLDH, parasite lactate dehydrogenase, another protein that is present in all species of *Plasmodium*. Devices that detect LDH require storage at <30°C (ref cited by Drakeley and Reyburn, 2009). Kits based on pLDH (see below) may be more sensitive than the BinaxNOW kit in detecting *P. vivax* (Mikhail *et al.*, 2011) and *P. knowlesi* (Garcia, 2010). Recently, several tests have been brought to market that make use of an antibody to species-specific epitopes of pLDH to detect *P. vivax*. Two of these tests, as well as one test that uses an antibody that reacts with the LDH of all species of *Plasmodium*, are reviewed in Mikhail *et al*. (2011). The tests with the antibody specific for *P. vivax* pLDH are the CareStart 3-line Pf (HRP2) + Pv (pv-LDH) (Cat No. G0161, Access Bio, Monmouth Junction, New Jersey) and the Bioline 3-line Pf(HRP2) + Pv (pv-LDH) (Cat No. 05FK80, Standard Diagnostics, Gyeonggi-do, Korea). Both tests are described as satisfactory for detection of *P. falciparum* and *P. vivax* in the WHO Information Note cited above, and both tests gave good performance in the studies of Mikhail and coworkers, but the Bioline test gave an unacceptably high proportion of invalid test results (10%). An invalid result is not a false negative or a false positive, but a test that cannot be read at all. Invalid tests result in a waste of time and money. At the time of writing, these tests could not be purchased in the United States, but they can be purchased in some malaria-endemic countries. ### WHO Evaluations of RDTs More than 150 studies of malaria rapid diagnostic tests have been published. Murray *et al.* (2008) have found methodological flaws in many of these studies. To provide health care workers with reliable information about RDTs, the WHO, beginning in 2008, began to publish a continuing series of reports on the performance of rapid diagnostic tests for malaria (see WHO in the references). Makler and Piper (2009) say the World Health Organization program to evaluate RDTs falls far short of what is needed to understand test performance. However, the WHO reports are the best available information for end users on the reliability of malaria rapid diagnostic tests. The volume of information contained in the online WHO reports is overwhelming and it probably not suitable for laboratories that are just trying to find out which test they ought to obtain. For this purpose, the WHO "Information Note" cited above is especially convenient and easy to use. RDTs are often superior to microscopy in detecting malaria in pregnancy (reviewed by Unecke 2008). However, HRP2-based RDT's, which are more sensitive than pLDH-based RDTs, fail to detect many placental malaria cases that are detected by placental blood smears (Fried *et al.*, 2012). More work is urgently needed to determine the accuracy of RDTs for the diagnosis of placental malaria (Kattenberg *et al.*, 2011). ### Pros and cons of RDTs Economic analyses suggest that RDTs could be cost beneficial in all but the highest transmission settings (reference cited by Drakeley and Reyburn, 2009). However, RDTs have several drawbacks, including the limited sensitivity mentioned above. For example, HRP2 is found at detectable levels in some patients 28 days after clinical presentation, well after resolution of symptoms and apparent clearance of parasites from patients (Tjitra *et al.*, 2001; reviewed by Murray and Bennett, 2009). This means that HRP2-based tests are not good for monitoring the response to treatment. In contrast, pLDH is rapidly cleared from the blood following parasite death (World Health Organization 2009). Even so, all current antigen assays may revert to positive if gametocytes subsequently appear in the bloodstream (Murray et al., 2008). Consequently, microscopy, rather than RDTs, should be used to monitor treatment efficacy (Gillet et al., 2010, There are several problems with antigen-based RDTs. For example, HRP2-based tests are subject to the prozone effect, in which very high antigen concentrations cause faint or weaker readings than do lower antigen concentrations (Gillet et al. 2009). In addition, false negatives in the HRP2 line have been seen due to mutations in or deletion of the HRP2 and HRP3 genes (see below). The T2 line, containing antibodies to aldolase, will still be positive, but it is less sensitive to P. falciparum by an order of magnitude compared to the T1 line. are strains of *P. falciparum* that have mutated or deleted their genes for HRP2 and/or HRP3 (some antibodies to HRP2 also react with HRP3). Those strains will give a negative T1 line, but the T2 line should still be positive if the parasitemia is high enough. But the sensitivity of the test will be lower. As of this writing, reports of negative HRP-2 based tests for P. falciparum have come from the following countries: Peru, 41% negative (Gamboa *et al.* 2010); 25.7% negative (Maltha *et al.*, 2012) Senegal, 5.9% (7 of 136 samples, Wurtz et al. 2013) Mali, 5.4% (26 of 480 samples, Koita et al. 2012) India, 4.2% (2 of 48 samples, Kumar et al. 2013). Brazil, one case, Houzé et al., 2011) The Centers for Disease Control and Prevention (CDC), with funding from the US Agency for International Development and in collaboration with the Amazon Malaria Initiative, the Pan-American Health Organization, and the Foundation for Innovative New Diagnostics is testing samples from South America for deletion of the HRP-2 and HRP-3 genes. Their July 2012 progress report gave the following results for HRP-2 deletions: Bolivia, 4% (1 in 25 samples) Colombia, 7.5% (3 in 40 samples) Guyana, 0% (0 of 97 samples) Honduras, 0% (0 of 68 samples) Peru, 33.3% (31 of 93 samples) Suriname, 14.10% (11 of 78 samples Tests based on pLDH appear not to be affected by the prozone effect (Gillet *et al.* 2009). Some RDTs can give false-positive results due to rheumatoid factors, antinuclear antibodies, anti-mouse antibodies, or due to factors that cause sera to be rapid plasma reagin positive (World Health Organization, 2008). RDT's cannot be used to measure parasite density and do not reliably identify the transmission stages of *Plasmodium*, the gametocyte (Drakeley and Reyburn, 2009). ### The Use of RDTs in Well-Equipped Laboratories Although it is necessary to rely on the results of rapid diagnostic tests in situations in which more sensitive tests are not available, they are also useful in well-equipped hospital clinics. The Royal Perth Hospital in Australia describes their policy as follows: "We would like to emphasise, that we regard these dipstick methods as useful additional tests to the long established method of examining thick and thin blood films...which is still regarded as the 'gold standard', NOT as replacement methods." http://www.rph.wa.gov.au/malaria.html The utility of rapid diagnostic tests for malaria diagnosis in Africa has been reviewed by Drakeley and Reyburn (2009). The role of diagnostic tests in the eradication of malaria has been reviewed by Tietje *et al.*, 2014. ### **Products mentioned in this review:** BinaxNOW Malaria Test Kit, manufactured and sold by Alere, 30 South Keller Rd., Suite 100, Orlando, FL 32810-6297, Phone 877-441-7440. The table below shows the catalogue numbers shown on the package insert from a 25-test BinaxNOW kit and the corresponding National Stock Number. The 5-test kit, which has been mentioned on some Web sites, was not available at the time of writing. | Product | Cat. No. from insert | National Stock No. | |-----------------------------|----------------------|--------------------| | 5-test kit | Kit not mentioned | none | | 12-test kit | 665-000 | 6550015548536 | | 25-test kit | 665-025 | 65500115548731 | | Positive Control kit | 665-010 | 6550015999065 | CareStart 3-line Pf (HRP2) + Pv (pv-LDH), Cat. No. G0161, Access Bio, 2033 US Highway 130 # H, Monmouth Jct, NJ 08852-3003. Phone: (732) 297-2222 Bioline 3-line Pf(HRP2) + Pv (pv-LDH), Cat. No. 05FK80. **Standard Dia gnostics**Address: 156-68, Hagal-ri, Giheung-eup Yongin-si Gyeonggi-do 449-906, Korea. Phone: 82-31-8999700 ### Literature
cited Centers for Disease Control and Prevention (CDC): Molecular Surveillance for HRP2 and HRP3 Gene Expression in *Plasmodium falciparum* Parasites from South and Central America. Progress Report, July 2012. Chanthap, L. *et al.*: Low-technology cooling box for storage of malaria RDTs and other medical supplies in remote areas. Malaria J. 9:31 (2010). Drakeley, C. and Reyburn, H.: Out with the old, in with the new: the utility of rapid diagnostic tests for malaria diagnosis in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 103:333-337 (2009). Fried, M. *et al.*: Diagnosing malaria in pregnancy: an update. Expert Rev. Anti-Infect. Ther. 10:1177-1187 (2012). Gamboa, D. *et al.* (2010): A large proportion of *P. falciparum* isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: Implications for malaria rapid diagnostic tests. PLoS ONE 5(1): e8091. doi:10.1371/journal.pone.0008091. Garcia, L.S.: Malaria update for the clinical microbiology laboratory: a new species, *Plasmodium knowlesi*, and new diagnostic tests. Clinical Microbiology Newsletter 32:127-133 (2010). Gillet, P. *et al.*: Assessment of the prozone effect in malaria rapid diagnostic tests. Malaria Journal 8:271 (2009). Gillet, P. *et al.*, External quality assessment on the use of malaria rapid diagnostic tests in a non-endemic setting. Malaria J. 9:359 (2010). Houzé *et al.*: Combined deletion of *pfrhp2* and *pfhrp3* genes result in *Plasmodium falciparum* malaria false-negative rapid diagnostic test. J.. Clinical Microbiol. 49:2694-2696 (2011) Kattenberg, JH, *et al.*: Systematic review and meta-analysis: rapid diagnostic tests versus placental histology, microscopy and PCR fro malaria in pregnant women. Malaria J. 10:321 (2011). Khaimar, K., *et al.*: Multiplex real-time quantitative PCR, microscopy and rapid diagnostic immuno-chromatographic tests for the detection of *Plasmodium* spp: performance, limit of detection analysis and quality assurance. Malaria J. 8:284 (2009). Koita, O.A. *et al.*: False-negative rapid diagnostic tests for malaria and deletion of the histidine-rich repeat region of the *hrp-2* gene. Am. J. Trop. Med. Hyg. 86:194-198 (2012). Kumar, N. *et al.*: Genetic deletion of HRP2 and HRP3 in Indian *Plasmodium falciparum* population and false negative malaria rapid diagnostic test. Acta Tropica 125:119-121 (2013) Makler, MT and Piper, RC: Rapid malaria tests: Where do we go after 20 years? American Journal of Tropical Medicine and Hygiene 81:921-926 (2009). Malaria Diagnostics Consortium for the U.S. Agency for International Development: Improving malaria diagnostics. FY09 Semi-Annual Report. MalERA Consultative group on diagnoses and diagnostics: A research agenda for malaria eradication: Diagnoses and diagnostics. PLoS Medicine 8(1)e1000396 (2011). Maltha, J., *et al.*: Rapid diagnostic tests for malaria diagnosis in the Peruvian Amazon: Impact of *pfhrp2* gene deletions and cross-reactions. PLoS One 7(8):e43094. doi:10.1371/journal.pone.0043094. Mikhail, A.F.W. *et al.*: Field trial of three different *Plasmodium vivax*-detecting rapid diagnostic tests with and without evaporative cool box storage in Afghanistan. Malaria Journal 10:169 (2011). Murray, C.K. *et al.*: Update on rapid diagnostic testing for malaria. Clinical Microbiology Reviews 21:97-110 (2008). Murray, CK and Bennett, J.W.: Rapid diagnosis of malaria. Interdisciplinary Perspectives on Infectious Diseases 2009, article ID 415953. Tietje, K. *et al.*: The essential role of infection-detection technologies for malaria elimination and eradication. Trends Parasitol. 30:259-266 (2014). Tjitra E, Suprianto S, McBroom J, Currie BJ, Anstey NM.: Persistent ICT malaria P.f/P.v panmalarial and HRP2 antigen reactivity after treatment of *Plasmodium falciparum* malaria is associated with gametocytemia and results in false-positive diagnoses of *Plasmodium vivax* in convalescence. Journal of Clinical Microbiology 39:1025-31 (2001). Uneke, C.J.: Diagnosis of *Plasmodium falciparum* malaria in pregnancy in sub-Saharan Africa: the challenges and public health implications. Parasitology Research 102:333-342 (2008). United States Agency for International Development (USAID) 2009: Transporting, Storing, and Handling Malaria Rapid Diagnostic Tests at Central and Peripheral Storage Facilities. Wilson, M.L.: Malaria rapid diagnostic tests. Clinical Infect. Dis. 54:1637-1641 (2012). Wolday D, Balcha F, Fessehaye G, Birku Y, Shepherd A.: Field trial of the RTM dipstick method for the rapid diagnosis of malaria based on the detection of *Plasmodium falciparum* HRP-2 antigen in whole blood. Tropical Doctor 31:19-21 (2001). Wongsrichanalai, C., *et al.*: A review of malaria diagnostic tools: Microscopy and rapid diagnostic test (RDT). American Journal of Tropical Medicine and Hygiene 7(Suppl. 6); 119-127 (2007). World Health Organization. 2009. List of known commercially available antigen-detecting malaria RDTs: Information for national public health services and UN Agencies wishing to procure RDTs. http://www.wpro.who.int/NR/rdonlyres/990245C0-F157-417A-90C7-B08A7E1A50BA/0/TotallistofISO131485criteria Rev 24MAR09.pdf 2009. World Health Organization Global Malaria Programme. Information Note on Recommended Selection Criteria for Procurement of Malaria Rapid Diagnostic Tests 2010. www.theglobalfund.org/documents/psm/psm RDTSelection Criteria en/ World Health Organization: Malaria rapid diagnostic test performance. Results of WHO product testing of malaria RDTs. Geneva, Switzerland. Round 1, 2008. Round 2, 2010, Round 3, 2010-2011. http://www.wpro.who.int/sites/rdt/who_rdt_evaluation/call_for_testing.htm Wurtz, T. *et al.*: *Pfhrp2* and *Pfhrp3* polymorphisms in *Plasmodium falciparum* isolates from Dakar, Senegal: impact on rapid malaria diagnostic tests. Malaria J. 2013 12:34. ### Rapid Tests and Stains Introduction: There are many requirements and guidelines for collecting different sample types for different body sites that are beyond the scope of this course. However it is important to note that there is ALWAYS the chance of contaminating a swab when collecting a sample. The phrase "junk in, junk out" is often used in the microbiology laboratory: the results can only as good as the sample the lab was given to work with. ### SAMPLE COLLECTION **Task 1:** Understand the importance of proper specimen collection and handling techniques. - Use universal precautions for collecting and handling all specimens. - Whenever possible, collect all culture specimens prior to administration of any antimicrobial agents. - Avoid contamination with indigenous flora. - All specimens must be appropriately labeled with two patient identifiers. - Deliver all specimens to the laboratory as soon as possible after collection. Specimens for bacterial culture should be transported at room temperature. If transport is delayed the following specimens should be refrigerated: urines (within 30 min), stool (within 1 h), respiratory specimens (within 1 h). Specimens for viral culture must be transported to the laboratory immediately on ice. See specific specimen and culture type for detailed collection and transport guidelines. - Specimens should be in tightly sealed, leak proof containers and transported in sealable, leak-proof plastic bags. Specimens for TB should be double bagged. Specimens should not be externally contaminated. Specimens grossly contaminated or compromised may be rejected. If anaerobic culture (no air) is requested, make certain to use proper anaerobic collection containers. ### WORKING WITH PURE CULTURES Introduction: Most samples collected will contain several different kinds of bacteria, each with different growth characteristics. Some of these may be contaminants, or normal flora for that body site. Others may be pathogens that are causing an infection, and these should be separated from the contaminants and normal flora for further analysis. Therefore, it is important to isolate a single colony (which contains millions of clones that originally grew from a single bacterium). Microbiologists often use the 4 quadrant streak method to isolate bacteria. ### 4 Quadrant streak for isolation **Task 2:** Perform the 4 Quadrant streak method of isolation **Step 1:** Label the bottom of the petri dish with the patient information, type of specimen (i.e. throat, wound, urine, etc.), and date. In a hospital you would also use the unique identifier for that sample, the accession number **Step 2a:** Swab specimen – roll swab on the 1st quadrant, making sure to touch the point of the swab to the media. Be careful not to puncture the media. **Step 2b:** Liquid specimen – thoroughly mix the specimen. Use a pipette or sterile inoculating loop to transfer one drop or one loopful to the 1st quadrant area. Spread evenly throughout the 1st quadrant. - **Step 3:** Rotate the plate. Using a sterile loop, streak the 2nd quadrant. The first 3-5 streaks should completely enter the 1st quadrant, and then subsequent streaks should stay in the 2nd quadrant. - **Step 4:** Rotate the plate and streak the 3rd quadrant the same way as the 2^{nd} . - **Step 5:** Rotate the plate and streak the 4th quadrant the same way as the 2nd and 3rd quandrants. Be sure not to reenter the 1st quadrant. - **Step 6:** Incubate the petri dish under the appropriate conditions (i.e. at 37°C in a CO₂ enriched environment), which depends on the type of bacteria that is suspected. ### SAMPLE PREPARATION Introduction: In order to perform tests to identify the bacteria that grow on the agar plates, a bacterial colony must be examined microscopically. In order to do this, it is transferred from the plate, affixed to a slide, and Gram stained. - **Task 3**: Prepare a slide for Gram-staining - **Step 1a**: If the sample is already in liquid form, transfer a drop of the suspended culture to be examined and place it onto a
slide with a sterile inoculation loop. - **Step 1b**: If the sample is to be taken from a petri dish, first add a drop of sterile water on to the slide. Then transfer a tiny amount of a colony from the petri dish, using an inoculating loops or wooden stick (a little goes a long way). Avoid using a cotton swab; the fibers may appear on the stained slide as artifacts. The smear should be thin enough to dry completely within a few seconds. - **Step 2**: Heat fix the slide either by flame until the slide is too hot to touch or by drying the slide on a slide warmer at 60°C for 10 minutes. Flaming may be bactericidal, so alternately, methanol may be used to fix the sample to the slide. 95% methanol is overlaid on the slide for 1 minute. This method is advantageous because it preserves the morphology of red blood cells as well as bacteria, making it especially useful for examining bloody specimens. ### **GRAM STAIN** Introduction: The Gram stain is the most commonly used stain in the clinical microbiology laboratory. It is used to divide most bacterial species into two categories: Gram-positive and Gram-negative. The Gram-stain will also tell the microbiologist what the bacteria's shape is, which include cocci (circular), bacilli (rods), diplococci (kidney-beaned shaped cocci in pairs), or coccobacilli (slightly rounded, short rods). Bacteria that do not stain well with the Gram stain or stain variably include organisms such as the spirochetes (i.e. *Treponema* spp., *Leptospira* spp.), *Mycobacteria* spp., and *Gardnerella vaginalis*. ### **Bacterial Shapes and Arrangements** Talaro and Talaro, Foundations in Microbiology, 1999. Gram-positive bacteria have two layers that make up their cell walls: the inner membrane and a thick layer of peptidoglycan (PG) with numerous teichoic acid cross-linkages. This thick layer of PG readily uptakes the basic primary stain, crystal violet, and the teichoic acids resist decolorization by the acetone alcohol, giving them a blue or purple appearance when examined microscopically. Gram-positive organisms can appear to be Gram-negative with the loss of cell wall integrity, which can occur to antibiotic treatment, old age, or with the action of autolytic enzymes. Yeast typically stain Gram-positive. Gram-negative bacteria have three layers to their cell walls: the inner membrane, a thin layer of PG, and the outer membrane (made up of lipopolysaccharides and protein islands). The PG layer in Gramnegative bacteria is not sufficient to retain the crystal violet stain, which is readily decolorized by the acetone alcohol. Gram-negative bacteria take up safranin, the counterstain, which gives them a red or pink appearance upon microscopic examination. Cross sections of Gram-positive and Gram-negative bacterial cell walls: ### **Gram Positive** ### **Gram Negative** Talaro and Talaro, Foundations in Microbiology, 1999. Components of the Gram stain: - 1. **Crystal violet** (primary stain): alkaline dye that stains all cells deep blue/purple - **2. Iodine** (mordant): chemically bonds the alkaline dye to the peptidoglycan - 3. 95% ethanol/acetone (decolorizer): washes the crystal violet out of Gram-negative cells, fixes the crystal violet in Grampositive cells due to dehydration. - **4. Safranin** (counterstain): positively charged dye that will stain Gram-negative cells red/pink. Will also stain eukaryotic cells (i.e. RBCs, epithelial cells) pink. Gram stains yield results much more quickly than culture, which is especially important when infection would make an important difference in the patient's treatment and prognosis (i.e. bacterial meningitis, bloodstream infections). The types of bacteria that are reported depend on the laboratory, the specimen site, and what is considered normal flora. Slides are first examined on low power to look for large structures such as hyphae and blood cells. Oil immersion allows for viewing bacteria and cell morphology. For specimens where organisms and blood cells are quantified, such as tissue and swabs, the quantity is determined by averaging the number of bacteria in 30-40 fields on the slide, skipping areas where no bacteria are present. ### Task 4: Perform the Gram stain procedure - **Step 1**: Take the fixed slide from Task 2 and place on a wire rack over a laboratory sink. - **Step 2**: Flood the slide with crystal violet for 60 seconds, rinse the slide with tap water - **Step 3**: Flood the slide with iodine for 60 seconds, rinse the slide with tap water - **Step 4**: Decolorize the slide by lifting one end and running the ethanol acetone down the slide for about 5 seconds, rinse the slide with tap water **Step 5**: Flood the slide with safranin for 30 seconds, rinse with tap water and allow the slide to dry (does not have to be completely dry for microscopic examination) **Step 6**: Examine the slide under the microscope using a 100x objective under oil immersion Illustration by Amanda Pierson, WRAIR Staff Graphic Design Artist Gram-negative bacilli (Escherichia coli) Photo credit: Amy Summers, MT(ASCP), WRAIR Photo credit: LTC Steven Mahlen, PhD, D(ABMM), WRAIR Gram-negative diplococci (Neisseria meningitidis) Photo credit: LTC Steven Mahlen, PhD, D(ABMM), WRAIR Photo credit: Amy Summers, MT(ASCP), WRAIR Photo credit: Amy Summers, MT(ASCP), WRAIR Photo credit: LTC Steven Mahlen, PhD, D(ABMM), WRAIR Gram-positive bacilli (Clostridium perfringens) Photo credit: LTC Steven Mahlen, PhD, D(ABMM), WRAIR Photo credit: LTC Steven Mahlen, PhD, D(ABMM), WRAIR ### GROWTH ON AGAR MEDIA Introduction: Bacteria that grow on agar plates have many different morphological appearances (colony size, color, hemolysis). They also have different growth requirements and often produce different metabolic waste products. Microbiologists exploit these characteristics and differences to presumptively identify bacterial species. Different types of agar plates can be used to grow different bacteria. Enriched media like blood and chocolate agar support the growth of nutritionally fastidious organisms and are used routinely for many different sample types and culture sites. Selective media inhibit the growth of certain organisms with dyes, antibiotics or salts while promoting the growth of others (i.e. CNA, mannitol salt, MacConkey agar). Differential media use agents such as sugars with pH indicators to give certain organisms a distinct colony appearance (i.e. mannitol salt, MacConkey agar). It should be noted that different media often combine the advantages of being both selective and differential. ### Appearance on blood agar plate Talaro and Talaro, Foundations in Microbiology, 1999. **Task 5a**: Describe colony morphology of an unknown organism on a blood agar plate. **Step 1**: Record the different morphological characteristics of the organism on a blood agar plate, including color, colony shape and size, edge, surface, surface, elevation, and hemolysis. **Task 5b**: Use differential growth media to presumptively identify an organism selective media (i.e. MacConkey, CNA agar). **MacConkey** agar is both selective and differential. It contains bile salts and the dve crystal violet, which inhibit the growth of grampositive bacteria and select for gram-negative bacteria. It also contains the carbohydrate lactose, which allows differentiation of gram-negative bacteria based on their ability to ferment lactose. Organisms which ferment lactose produce acid end-products which react with the pH indicator neutral red, and produce a pink color. Photo credit: Amy Summers, MT(ASCP), WRAIR **Quadrant 1**: The organism is not inhibited by bile salts and crystal violet and is a Gram-negative bacterium. The pink color of the bacterial growth indicates that it is able to ferment lactose. **Quadrant 2**: Growth on the plate indicates the organism is not inhibited by bile salts and crystal violet and is a Gram-negative bacterium. The pink color of the bacterial growth indicates it is able to ferment lactose **Quadrant 3**: Absence of growth indicates the organism is inhibited by bile salts and crystal violet and is a Gram-positive bacterium. **Quadrant 4**: Growth on the plate indicates the organism is not inhibited by bile salts and crystal violet and is a Gram-negative bacterium. The absence of color in the bacterial growth indicates that the organism is unable to ferment lactose. Columbia CNA Agar with 5% Sheep Blood: The addition of the antimicrobial agents, colistin and nalidixic acid, renders the medium selective for gram-positive microorganisms. The colistin disrupts the cell membranes of gram-negative organisms, whereas the nalidixic acid blocks DNA replication in susceptible gram-negative bacteria. Photo credit: Amy Summers, MT(ASCP), WRAIR Left Side: Absence of growth on the plate indicates the organism is sensitive to the antibiotics and is Gram-negative. **Quadrant 2**: Growth on the plate indicates this organism is resistant to the antibiotics colistin and naladixic acid and is Gram-positive. ### RAPID BIOCHEMICAL TESTS Introduction: After separating bacteria by shape and Gram-stain appearance, microbiologists use additional biochemical tests to further aid in the identification of the organism. Catalase is an enzyme that breaks hydrogen peroxide down into oxygen and water (positive test is visualized by rapid bubbling). Negative test will not bubble. Photo credit: Amy Summers, MT(ASCP), WRAIR The **coagulase** test is useful in differentiating *Staphylococcus aureus* from other coagulase negative *Staphylococci*. Staphaurex, a rapid coagulase test, consists of white latex particles coated with human fibrinogen for detection of clumping factor and coated with specific IgG for detection of protein A. If the test organism is *Staphylococcus aureus*, it will clump after being added to the reagent and rotated for 20 seconds. If the test organism is negative, the reagent/organism mixture will stay white and diffuse after 20 seconds of rotation. Photo credit: Amy Summers, MT(ASCP),
WRAIR The **oxidase** test identifies organisms that produce the enzyme cytochrome oxidase. The oxidase reagent contains a chromogenic reducing agent, which is a compound that changes color when it becomes oxidized. If the test organism produces cytochrome oxidase, the oxidase reagent will turn blue or purple within 15 seconds. Photo credit: Amy Summers, MT(ASCP), WRAIR The **indole** test screens for the ability of an organism to degrade the amino acid tryptophan and produce indole (tryptophan + water = indole + pyruvic acid + ammonia). A positive result is the appearance of a pink-red color. Photo credit: CPT Amanda Roth, WRAIR The EnterotubeTM II is a rapid, multi-test system used in identification of unknown Gram-negative bacilli that are oxidasenegative (Enterobacteriaceae family). The flat sided tube contains 12 compartments that each contain a different biochemical test. It is used by first removing the caps from both ends to expose the sterile inoculation wire. The EnterotubeTM II is inoculated by touching the wire to an isolated colony from a petri dish. The wire is pulled and rotated from the other end to inoculate all 12 compartments and then pushed back in to reinoculate them. The wire is then pulled until it reaches the indole compartment and is borken off using a pair of pliers. The performation of the aerobic compartments must be punctured using a sterile inoculation needle or similar tool. The tube is recapped and incubated at 37°C for 24 hours. After 24 hours of incubation, any color change is recorded in the Identification Card provided by the manufacturer. Two comparments, indole and Voges-Prosckauer, require the addition of reagents before results can be recorded. The numerical values of the positive tests are added in their appropriate sections to yield a 5-digit ID for the organism being tested. This 5-digit number is compared to a reference book or software program to determine the bacterial identification. Inoculation of the EnterotubeTM II Photo credit: SPC Bartholomew Taylor, WRAIR ### EnterotubeTM II Interpretation Guide Figure provided by BD BBL **Task 6**: Perform rapid biochemical tests that help can provide preliminary identification of bacterial isolates (blood agar plate and colony morphology, catalase, oxidase, indole) **Task 6a**: Perform the catalase test on two bacteria and record the results - **Step 1**: Transfer a visible amount of bacteria to a glass slide - **Step 2**: Add a drop of 3% hydrogen peroxide to the bacteria, examine immediately to record results. - Perform the rapid coagulase test (Staphaurex) on two bacteria and record the results - **Step 1**: Transfer 5-6 well isolated colonies to two separate black circles - **Step 2**: Add one drop of gently, but well mixed reagent to each circle and mix thoroughly with the wooden applicators provided. Be sure to use a different stick for each circle - **Step 3**: Rotate card for 20 seconds and record results - Task 6c: Perform the oxidase test on two bacteria and record the results - **Step 1**. Collect a visible amount of colonies on a wooden applicator and apply to one unused corner of the Oxidase Dryslide media. Wit 15-20 seconds and record results. - Perform the indole test on two bacteria and record the Task 6d⁻ results. - **Step 1**: Collect a visible amount of colonies on the swab. - **Step 2**: Apply 1-2 drops of the indole reagent to the swab. Wait 1-3 minutes and record results. - Task 6e: Correctly identify the organism that was inoculated in the EnterotubeTMII - Step 1: Record the colors in the 12 different compartments of the EnterotubeTMII and compare them to the interpretation guide. - Add the numerical values for each section's positive compartments (should result in a 5-digit number. **Step 3**: Look up that 5-digit number for the bacterial identification and record the results. Preparing a blood smear Introduction: An acceptable blood smear needs to be made prior to staining and examination (parasites, WBC differential, bacteria, etc.) An acceptable blood smear should have the following characteristics: - Should cover approximately half of the slide, tapering at the end with a feathered edge - Should not extend to the edges of the slide - Should be uniform in consistency (i.e. without holes, scratches, or ridges) The characteristics of a blood smear are affected by the size of the drop of blood, the angle at which the spreader slide is held and the spped at which the drop is spread. These factors affect the amount of blood carried by the spreader slide which then affects the thickness of the smear. It takes a lot of practice to consistently make a good blood smear. ### **Task 8**: Prepare a blood smear for microscopic examination - Step 1: Lay a clean microscope slide on a flat surface - **Step 2**: Place a small drop of blood about half an inch from the frosted end of the slide using an applicator stick, capillary tube, or needle. - **Step 3**: Lightly balance another slide (the spreader slide) on your fingertips and place the spreaders slide at a 30 degree angle in front of the drop of blood - **Step 4**: Pull the spreader slide back toward the blood droplet until it touches the droplet and blood spreads along the edge of the spreader slide **Step 5**: Quickly push the spreader slide forward using a The weight of the slide is the only steady, even motion. pressue applied to the smear during this procedure. **Step 6**: Air dry the smear and stain within one hour ### The Diff-Quick® Stain Introduction: Diff-Quick® is a proprietary, Romanowski stain containing a mixture of eosin and methylene blue. When applied to blood cells that are affixed to a slide, the dyes produce multiple colors basic on the ionic charge of the stain and various cellular components. Eosin ions are negatively charged and stain basic cellular components an orange to pink color. Methylene blue ions are positively charged and stain the acidic cellular components in varying shades of blue. Neutral components of the cell are stained by both eosin and methylene blue, producing variable colors.Diff-Quick® staining components. Figure provided by Fisher Scientific Appearance of different components in a peripheral blood smear: | | Cellular
Component | Color | Increase | Associated pathological conditions | |-----------------|-----------------------|------------------------|----------------|--| | Red blood cells | NA | Pink | Polycythemia | Myeloproliferative disease | | Platelets | NA | Violet
to
purple | Thrombocytosis | Myeloproliferative disease, inflammation | | Neutrophils | Nucleus | Dark | Neutrophilia | Bacterial infection, | | | | blue | | | |-------------|----------------------|---|---------------|---| | | Cytoplasm | Pale
pink | | acute inflammation, certain cancers | | Eosinophils | Nucleus | Blue | Eosinophilia | Allergic reaction, parasitemia, certain cancers | | | Cytoplasm | Blue pink to red to | | | | | Granules | orange | | | | Basophils | Nucleus
Granules | Purple or dark blue Dark purple to black. | Basophilia | Allergic reaction, inflammation | | Monocytes | Nucleus
Cytoplasm | Violet
Sky
blue | Monocytosis | Chronic-
inflammation,
certain cancer | | Lymphocytes | Nucleus | Blue to purple Light blue | Lymphocytosis | Acute viral infeciton, Chagas Disease, certain | | | Cytoplasm | Diue | | cancers | **Task 9**: Perform a Diff-Quick® stain on a freshly prepared blood smear for microscopic examination. **Step 1**: Dip the blood smear into the Diff-Quick® Fixative Solution five times for one (1) second each time. Wipe the back of the slide with gauze to prevent carry over into the next stain. Do not allow the fixative to dry on the slide as this will result in an over-fixed wet appearance. Immediately proceed to the next step while the slide is still wet. - Step 2: Dip the fixed blood smear into the Diff-Quick® Solution I five times for one (1) second each time. Wipe the back of the slide with gauze to prevent carry over into the next stain. Do not allow the stain to dry on the slide. Immediately proceed to the next step while the slide is still wet. - Step 3: Dip the fixed blood smear into the Diff-Quick® Solution II five times for one (1) second each time. Wipe the back of the slide with gauze to prevent carry over into the next stain. Do not allow the stain to dry on the slide. Immediately proceed to the next step while the slide is still wet. - **Step 4**: Rinse the fixed blood smear with distilled water five times for one (1) second each time. Wipe the back of the slide to decrease drying time. Set the slide upright to air dry. Allow the slide to dry thoroughly before reading. - Step 5: To decrease drying time, slides may be blown dry. Set the blow dryer on cool and hold the slide at least 12 inches from the air flow until completely dry. - **Step 6**: Look at the morphology of the various cellular components of peripheral blood under a microscope on 50x and 100x objectives with oil immersion ### RAPID ANTIBODY/ANTIGEN TESTS **Introduction:** The body's response to infection includes antibody production. The laboratory takes advantage of the production of these antibodies to help identify that exposure to an infectious agent has occurred. Often the lab will request paired samples to compare titers. Common FDA cleared antibody/antigen tests in the microbiology laboratory include (but are not limited to) those for the detection and/or identification of HIV, beta-hemolytic Streptococcal groups, and influenza. The **OraQuick** ® **ADVANCE** rapid test utilizes a proprietary lateral flow immunoassay procedure. The assay test strip contains synthetic peptides representing the HIV envelope region in the Test (T) zone and a goat anti-human IgG in the Control (C) zone immobilized onto a nitrocellulose membrane. An oral fluid specimen is collected using the flat pad on
the test device, followed by insertion into the developer solution. If the specimen contains antibodies that react with the antigens immobilized on the nitrocellulose membrane, a reddish-purple line will appear, qualitatively indicating the presence of antibodies to HIV-1 and/or HIV-2 in the specimen. A built-in procedural control serves to demonstrate that a specimen was added to the vial and that the fluid has migrated adequately through the test device (C zone). A reddish-purple line will appear in the C zone during the performance of all valid tests, whether or not the sample is positive or negative for antibodies to HIV-1 and/or HIV-2. OraQuick ® ADVANCE Rapid Test Device for the presence of anti-HIV antibodies Photo credit: CPT Amanda Roth, WRAIR **Introduction:** Group A *Streptococcus, Streptococcus pyogenes,* is the most significant cause of pharyngitis. Early diagnosis and treatment of Group A streptococcal pharyngitis has been shown to reduce the severity of symptoms and serious complications such as rheumatic fever and glomerulonephritis. The Quidel QuickVue Strep A Test is a lateral flow immunoassay that allows for the rapid detection of Group A Streptococcal antigen directly from patient throat swab specimens. It is a one reagent test that gives results in 5 minutes. The test is intended for use as an aid in the diagnosis of Group A Streptococcal infection. Extracted solution from the throat swab is applied to the test strip and flows through the label pad by capillary action. If the solution contains the Strep A antigen, a red test line will form on the label pad. A blue control line will also form, indicating the test was performed correctly. ### **Ova and Parasites** In this laboratory exercise, an appreciation of the various types of major parasitic groups will be examined, examples of the major groups will be viewed under a microscope to appreciate the various presentations of the parasites, and discussion will be exchanged about the relevance of major parasitic groups. The three major groups are illustrated below: ### Relationships of Common Parasites ### <u>Platyhelminthes</u> (flatworms) <u>Protozoans</u> (singled-celled organisms) **Nematodes** (roundworms) The first group to be examined will be the flatworms (or Platyhelminthes). The relationship of various groups within this major division is illustrated below: (Courtesy of <u>A Manual of Tropical Medicine</u> by Thomas T. Mackie, George W. Hunter III, and C Brooke Worth, 1945 by W. B. Saunders Company, Philadelphia) Fig. 213.—Epidemiology of the schistosomiases. (Courtesy of <u>A Manual of Tropical Medicine</u> by Thomas T. Mackie, George W. Hunter III, and C Brooke Worth, 1945 by W. B. Saunders Company, Philadelphia) (Courtesy of the <u>Army / Air Force manual AFM 160-48/TM 8-227-2</u>, 1August 1974) Fig. 233.—Cestode cycle—D. latum type. (Courtesy of <u>A Manual of Tropical Medicine</u> by Thomas T. Mackie, George W. Hunter III, and C Brooke Worth, 1945 by W. B. Saunders Company, Philadelphia) # Plerocercoid & ### EPIDEMIOLOGY - I. Reservoir: man, carnivores - 2. Intermediate hosts: copepods, fresh-water fish - 3. Undeveloped ova in stool - 4. Fecal contamination of water - 5. Coracidia ingested by copepods - 6. Infected copepods eaten by fish - 7. Plerocercoids in muscles of fish - 8. Ingestion of undercooked fish 9. Adults in small intestine Fig. 236.—Epidemiology of diphyllobothriasis. Fig. 242.—Epidemiology of hydatid disease. (Courtesy of <u>A Manual of Tropical Medicine</u> by Thomas T. Mackie, George W. Hunter III, and C Brooke Worth, 1945 by W. B. Saunders Company, Philadelphia) The second group to be examined will be the roundworms (or Nematodes). The relationship of various groups within this major division is illustrated below: Another way to look at the Nematodes is how they are transmitted: Fig. 158.—Nematode cycle—direct type. Fig. 164.—Epidemiology of pinworm, whipworm and ascaris infections. to esophagus adults in intestine 6. Mature worms localize in lower intestine (Courtesy of <u>A Manual of Tropical Medicine</u> by Thomas T. Mackie, George W. Hunter III, and C Brooke Worth, 1945 by W. B. Saunders Company, Philadelphia) dust 7. Ingested ova hatch in intestine - 1. Fecal contamination of soil - 2. Rhabditiform larvae in soil - 3. Filariform larvae on soil - 4. Penetration of exposed skin - 5. Migration of larvae - 6. Localization, small intestine - 7. Feeding on blood of host - 8. Ova passed in stool Fig. 172.—Epidemiology of hookworm disease. Fig. 202.—Dracunculus medinensis partially extracted. (Courtesy of Maj. J. M. Hulsey, Jr., M.C., A.U.S., through Lt. Col. Hardy A. Kemp, M.C., A.U.S., Army Medical School.) Numbers 21:8 And the LORD said unto Moses, Make thee a fiery serpent, and set it upon a pole: and it shall come to pass, that every one that is bitten, when he looketh upon it, shall live. Rod of Asclepius (Courtesy of <u>A Manual of Tropical Medicine</u> by Thomas T. Mackie, George W. Hunter III, and C Brooke Worth, 1945 by W. B. Saunders Company, Philadelphia) The last group to be examined will be the single-celled organisms (or Protozoans). The relationship of various groups within this major division is illustrated below: Fig. 152.—Epidemiology of Chagas' disease. Fig. 99.—C1: Iron-hematoxylin stained binucleate cyst of Endamoeba coli. C2: Iron-hematoxylin stained quadrinucleate cyst of E. coli. C3: Iron-hematoxylin stained mature cyst of E. coli. H1: Iron-hematoxylin stained uninucleate cyst of E. histolytica. H2: Iron-hematoxylin stained binucleate cyst of E. histolytica. H3: Iron-hematoxylin stained mature cyst of E. histolytica. N1: Iron-hematoxylin stained uninucleate cyst of Endolimax nana. N2: Iron-hematoxylin stained mature cysts of Endamoeba bütschlii. C4: Unstained mature cyst of E. coli. H4: Unstained mature cyst of E. histolytica. Fig. 100.—1. Iron-hematoxylin stained trophozoite of Giardia lamblia. 2. Iron-hematoxylin stained cyst of G. lamblia. 3. Iron-hematoxylin stained cyst of G. lamblia endview. 4. Iron-hematoxylin stained trophozoite of Chilomastix mesnili. 5. Iron-hematoxylin stained cyst of C. mesnili. 6. Iron-hematoxylin stained trophozoite of Trichomonas hominis. 7. Iron-hematoxylin stained trophozoite of T. vaginalis. 8. Iron-hematoxylin stained Blastocystis hominis. 9. Unstained B. hominis. 10. Trophozoite of Balantidium coli. 11. Unstained cyst of B. coli. ## Entomology Mosquito-borne diseases. Mosquitoes are the most important group of vectors of human diseases. Throughout recorded history they have transmitted hundreds of different pathogens of humans, including: protozoans, viruses, and parasites that kill millions of people a year even today and debilitate hundreds of millions more. An example of some major pathogen groups is detailed briefly below. Websites that contain details about mosquito-borne human diseases, their vectors, distributions and prevention include: ### 1. Malaria Malaria transmission is endemic in many tropical regions around the world, and transmission may occur nearly year round in many tropical countries, except at higher elevations (>500 m). The World Health Organization (WHO) estimated in 2009 that there are >300 Million new cases of malaria each year and that >1.5 Million of those are fatal each year with most of those cases and fatalities occurring in sub-Saharan Africa, India, and Southeast Asia. Vector mosquito activity and related intensity of transmission increase and decrease based on rainfall timing and patterns and also vary with the particular vector species, but are usually most intense during or shortly after peaks of rainfall in warm months. Strains of *Plasmodium falciparium* and *P. vivax* resistant to chemoprophylactic drugs have been reported to be present in some countries. Adult females of at least 60 species of *Anopheles*, worldwide, have been proven capable of spreading the four species *Plasmodium* that cause human malarias. Many of these are species complexes and are still not well studied. Insecticide resistance is not regularly monitored in many countries, nor well reported. Historically, many countries have reported resistance or tolerance by several species of vector mosquitoes to commonly used insecticides. Anyone going into a country or region where malaria is known or reported to be present should seek preventive and prophylactic advice (anti-malarial materials and dose guidance) from their higher medical authorities. They may also wish to do a search beforehand on websites of the WHO (www.who.int), the U.S. CDC (www.cdc.gov), or similar travelers' health sites, for their latest reported status and currently suggested chemoprophylactic drugs (and respective doses). Malaria may be a significant threat to either short or long term military operations in every place where it is endemic or has been recently reported to be actively transmitted. Appropriate personal protective techniques should be used routinely to help prevent infection by any vector-borne disease(s) wherever you may be in the world. Areas at risk for P. vivax transmission - 2009 P. falciparum endemicity – 2009 ### Malaria Disease Cycle(s) # LIFE HISTORY OF THE MALARIA PARASITE (PLASMODIUM VIVAX) IN MAN AND THE ANOPHELES MOSQUITO ### Comparison of characteristics of three major mosquito genera. | ANOPHELES | AEDES | CULEX | | |--|---|--|--| | EGGS LAID SINGLY HAS FLOATS | LAID SINGLY NO FLOATS | LAID IN RAFTS NO FLOATS | | | REST PARALLEL TO WATER SURFACE RUDIMENTARY BREATHING TUBE | AIR TUBE REST AT AN ANGLE SHORT AND STOUT BREATHING TUBE WITH ONE PAIR OF HAIR TUFTS | LONG AND SLENDER BREATHING TUBE
WITH SEVERAL PAIRS OF HAIR TUFTS | | | PUPAE | PUPAE DIFFER SLIGHTLY | | | | PROBOSCIS AND BODY IN ONE AXIS MAXILLARY PALPS AS LONG AS PROBOSCIS WINGS SPOTTED | PROBOSCIS MAXILLARY PALPS SHORTER THAN PROBOSCIS WINGS SOMETIMES SPOTTED TIP OF FEMALE ABDOMEN USUALLY POINTED | PROBOSCIS MAXILLARY PALPS SHORTER THAN PROBOSCIS WINGS GENERALLY UNIFORM TIP OF FEMALE ABDOMEN USUALLY BLUNT | | ### 2. Dengue **Dengue** virus (**DENV**) is widespread and essentially endemic throughout many tropical areas of the world. Periodic outbreaks of all four strains (serotypes DENV-1, -2, -3, & -4) occur and tend to go through poorly defined cycles of transmission at roughly 10-15 year intervals. Both dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) have been reported currently or very recently from a number of tropical countries. Populations of the primary vector, Aedes aegypti, have greatly increased due partly to rapid and uncontrolled urbanization in much of Southeast Asia. Aedes albopictus is an important vector in peri-urban and rural areas of some regions and a cold-hardy strain of this species has spread from Northern Asia to the central U.S. and Brazil, and it was recently reported as established in northern Europe (i.e., the Netherlands). Dengue is a debilitating disease that would be a significant threat to military forces and there is no effective preventive vaccine or curative treatment, only supportive care (for current specifics see Heinemann 2009, and search the U.S. CDC and the WHO websites). ### **Distribution of Dengue:** ### Dengue Disease Cycle (an example of an arbovirus): **Some Vectors of Dengue**: Comparison of Adult Female *Aedes aegypti* vs. *Aedes albopictus*. ### 3. Chikungunya virus (CHIKV) **Chikungunya (CHIKV)** virus is endemic to Africa and Asia and is transmitted by the same mosquitoes as DENV, *Ae. aegypti* and *Ae. albopictus*. CHIKV causes an illness with symptoms similar to dengue fever. CHIKV manifests itself with an acute febrile phase of the illness lasting only two to five days, followed by a prolonged arthralgic disease that affects the joints of the extremities. The pain associated with CHIKV infection of the joints persists for weeks or months, or in some cases years. ### 4. Japanese encephalitis (JE) Japanese encephalitis (JE) virus has caused widespread epidemics in Japan and the Republic of Korea and is endemic in Southeast Asia. The virus is maintained in nature by mosquitoes and non-human vertebrates, and man becomes accidentally involved. In temperate countries like Japan, the disease occurs in the warm weather; in the tropics it could occur during any season, although the risk is higher during and immediately after the rainy season when the mosquito population increases. *Culex tritaeniorhynchus*, a rice field breeding mosquito is the principal vector and feeds mainly on large animals and birds. Elsewhere in the area of distribution, *Cx. gelidus* (predominantly a pig biter) and *Cx. vishnui* group mosquitoes are also involved. Japanese encephalitis is predominantly a rural disease and in most of southeastern Asia, associated with rice cultivation and mosquitoes which breed in rice fields. Transmission is by bite. A licensed vaccine is available. ### 5. Filariasis Bancroftian filariasis, caused by Wuchereria bancrofti, and Brugian **filariasis**, caused by *Brugia malavi*, are now lumped by the WHO as "Lymphatic Filariasis" (LF). According to the WHO (2007), LF is currently endemic and widespread, and poses serious public health problems in Southeast Asia, South Asia, and sub-Saharan Africa. Mapping of the populations at risk and related programs of mass drug administration (MDA), using oral dosing with diethylcarbamazine citrate (DEC), are in progress in a number of countries, and seem to be reducing the levels of LF morbidity therein. The main vectors of Bancroftian filariasis, Culex pallens and Cx. quinquefasciatus, have become more abundant as breeding sites have been expanded due to increased urbanization and poor sanitation. Nocturnally periodic forms of B. malayi and W. bancrofti are also currently endemic in parts of Southeast Asia and some southwest Pacific islands. At least 16 different species of tropical area mosquitoes are reported to be effective vectors of filariases (LF), including several species of Anopheles. ### Distribution of Filariasis: 150 ## Filariasis disease cycle (Bancroftian): # Typical transmission cycles for Wuchereria bancrofti and Brugia malayi: Explanatory notes:— Infective vector masquitoes (A) repeatedly inoculate Man "X" who becomes a symptomless microfilaria carrier in about a year or more; he infects numerous vector masquitoes (B) which in turn inoculate Man "Y" who also becomes a microfilaria carrier and passes on the infection to still more vector masquitoes (C). A symptomless carrier (Man "X" or "Y"), continually exposed to further bites of infected vectors, may later develop filarial disease (Man "Z") with the onset of disease, his peripheral blood usually becomes free from microfilariae so that he is no langer a carrier. Sand Fly-borne Diseases. One of the issues with sand fly borne diseases is that there are no vaccines or prophylactics available for them. For this reason vector control and personal protective measures are the only defenses against contracting these diseases. Sand flies are much smaller than most mosquitoes. Like mosquitoes only females take a blood meal and are capable of disease transmission. Unlike mosquitoes they do not have an aquatic phase to their life cycle. They are found in temperate and warmer environments, ranging from forests to deserts. The larvae feed on decaying organic matter from decaying vegetation to feces. Adult sand flies can be distinguished from most other blood-sucking arthropods including their related mosquitoes in that they hold their wings in a "V" shape rather than laying them flat against their abdomens. They also tend to "hop" after lighting on surfaces. When examining light trap collections their small size, hunched back, long legs, and the fine hairs (rather than scales) along with their wings held away from their bodies helps to separate them from other insects. #### 1. Leishmaniasis **Leishmaniasis** is an infection of animals and humans caused by protozoa in the genus *Leishmania*. At least 23 *Leishmania* species cause leishmaniasis. There are three forms of the disease: cutaneous (CL), mucocutaneous (MCL) and visceral (VL). CL appears as a nonhealing ulcer lasting months to years if untreated. MCL patients develop ulcerative or granulomatous (granular) lesions of the nasal, oral, and pharyngeal linings, which generally occur after or concurrent with CL lesions. VL, the most severe form of leishmaniasis with 95% mortality in untreated cases, is a chronic disease involving the liver and spleen. Transmission occurs through the bite of infective female phlebotomine sand flies in the genera *Phlebotomus* (Old World) and *Lutzomyia* (New World). Generally, sand flies feed at dusk and during the evening; however, some species are opportunistic and will feed during the day if disturbed. The uninfected sand fly generally acquires the infection by feeding on a reservoir host. Reservoirs for leishmaniasis, which vary depending on location, include domestic dogs, rodents (including rats, hyraxes and gerbils), sloths, marsupials, and in some endemic areas, humans. It is reported that 90 species of *Lutzomyia* and at least 39 species of *Phlebotomus* feed on humans. Protect Yourself from Leishmaniasis. Limit outdoor activity at dusk and during the evening when possible as this is when the sand fly is most active. If possible building should have window screens or other barriers to keep sand flies from entering. Sand flies bite in and outdoors; although generally nocturnal, they may feed during the day in buildings. Avoid the bites of sand flies by using protective clothing and insect repellents (See Personal Protective Measures in the Vector Management Section). #### 2. Sand Fly Fever **Sand Fly Fever** is a *Phlebovirus*, (Bunyaviridae) with two major serotypes, Sicilian and Naples. It occurs in the Mediterranean, Mid-East and North Africa. A major vector is *Phlebotomus papatasi*; however, several other species of Phlebotomus also serve as vectors. Female *Phlebotomus papatasi* Male *Lutzomyia longipalpis* http://www.raywilsonbirdphotography.co.uk/Galleries/Invertebrates/000_invert_i mages/vector_images/2009-05-20_JS8Q8643-Lu_longipalpis.jpg Control and Personal Protective Measures would be those used for other sand fly borne diseases such as Leishmaniasis. <u>Tick-borne Diseases</u>. Tick-borne illnesses are caused by infection with a variety of pathogens, including rickettsia and other types of bacteria, viruses, and protozoa. Because ticks can harbor more than one disease-causing agent, patients can be infected with more than one pathogen at the same time, compounding the difficulty in diagnosis and treatment. The geographic range of many tick-borne diseases is not well known and symptoms are often similar to other bacterial or viral diseases. Prevention of tick bites should be stressed using methods described below. Vector Surveillance and Suppression. Light traps can be used to collect night-biting mosquitoes, phlebotomine sand flies, and Culicoides. Not all species are attracted to light and adding carbon dioxide (CO2) to light traps (figure 1) increases the number of species and total numbers of females collected. Traps baited with animals or humans or placed around their habitations can be useful for determining risk in these areas and may also increase catch. (the use of humans as attractants may be subject to the requirements of formal human-use protocols). Adults can be collected from indoor and outdoor resting sites using a mechanical aspirator and flashlight. For mosquitoes systematic larval sampling with a long-handled white dipper provides information on species
composition and population dynamics of species breeding locally that can be used to plan control measures. Larva sampling are generally not effective for sand flies. Typical light trap used in the surveillance of night biting insects. These traps come in different formats but consist basically of a light and a fan which drives the insects into a collection jar or net when they get close to the light. Carbon dioxide can be added to the trap in the form dry ice or compressed gas cylinder. Figure 1. Mosquito light trap. ## **Vector Management (Control)** ## 1. Personal protective measures Personal protective measures are the first line of defense against arthropod-borne disease and, in some cases, may be the only protection for deployed military personnel. Proper wearing of the uniform and appropriate use of repellents can provide high levels of protection against blood-sucking arthropods. The uniform fabric provides a significant mechanical barrier to mosquitoes and other blood-sucking insects. Therefore, the uniform should be worn to cover as much skin as possible if weather and physical activity permit. Some newly developed repellents provide military personnel unprecedented levels of protection. An aerosol formulation of permethrin (NSN 6840-01-278-1336) can be applied to a uniform according to label directions, but not to the skin. This will impart both repellent and insecticidal properties to the uniform material that will be retained through numerous washings. An extended formulation lotion of N, N-diethyl-m-toluamide (DEET) (NSN 6840-01-284-3982) has been developed to replace the older 2 oz. bottles of 75% deet in alcohol. This lotion contains 33% active ingredient. It is less irritating to the skin, has less odor and is generally more acceptable to users. A properly worn Uniform (e.g., ACU) impregnated with permethrin, combined with use of extended duration DEET on exposed skin, has been demonstrated to provide nearly 100% protection against a variety of blood-sucking arthropods. This dual strategy is termed "the **DoD Arthropod Repellent System.**" In addition, permethrin may be applied to bednets, tents, and other field items as appropriate. Complete details regarding these and other personal protective measures are provided in TG 36, Personal Protective Techniques Against Insects and Other Arthropods of Military Significance (2009). #### 2. Physical Controls Soldiers often do not have the option to avoid potential disease vector or their typical habitats, but physical controls may sometimes be possible. Covering structural openings (e.g., doors and windows) with screen fine enough to exclude particular vectors or biting pests may be very practical, especially in permanent or semi-permanent camps. Sealing cracks and joints in even temporary structures and vehicles whenever possible or covering such openings with netting (like a bed net, or part of an old one) might keep out a lot of filth flies that can spread food-borne diseases), as well as scorpions and similar crawling pests that can pose a health threat. The use of fly swatters or similar devices against individual invaders falls within this same category of control. Use a bed net while sleeping; NSN 7210-00-266-9736 (Netting), NSN 7210-00-267-5641 (Poles). Because sand flies are small enough to pass through the mesh of the standard bed net, permethrin (aerosol spray) should be applied to netting. There is enough permethrin in one spray can to treat one uniform and a bed net. #### 3. Source Reduction Eliminating standing water or treating it with non-toxic or minimally toxic (to humans) larvicides like *Bti* or an insect growth regulator (an IGR) within a 100-ft. radius of any point can greatly reduce the local breeding and short-range attraction of a number of mosquitoes, Phlebotomine sand flies, and certain other vectors and pests. Surface drainage, filling pot holes, and similar actions can also help reduce the numbers of a given vector or pest species that any particular habitat can support. Removing trash, garbage and rubbish frequently could reduce the habitat for a number of arthropod and some vertebrate pests so many fewer can live near your site. #### 4. Chemical Controls Chemical control of vectors or pests is not usually a practical option for soldiers, but the use of residual insecticides to treat the interior of semi-permanent or permanent buildings and other selected surfaces can be a very important strategy in some situations. Specific chemicals (e.g., repellents) applied to bed nets, screening, or movable structural elements (like temporary walls or partitions) can greatly reduce or eliminate vector or pest populations in many situations (especially crawling pests and even certain mosquitoes or other biting arthropods). When properly planned and performed, wide area treatments with ULV or fogging devices can knock down a large portion of currently active population of infected vectors, and thus, possibly prevent or greatly reduce local area outbreaks of some diseases (e.g., some relatively deadly encephalitides). Such treatments are beyond the capabilities of most soldiers or tactical units. #### 5. Preventing tick, chigger and flea bites When operating in areas infested with ticks, chiggers or fleas, the pants should be bloused into the boots to prevent access to the skin by ticks and other crawling arthropods such as chiggers. Check yourself frequently when walking through tick-infested areas. Upon returning from infested areas, remove all clothing and examine yourself for ticks and chiggers. Infected ticks may require several hours of feeding before pathogens are transmitted. Therefore, personnel who operate in tickinfested areas should check themselves frequently for ticks and remove them as soon as possible. If ticks become attached, the simplest and best method of removal is by a slow, steady pull with a pair of tweezers or forceps. Do not squeeze the body but grasp the tick where the mouthparts enter the skin and pull firmly until the tick is extracted. Be careful not to break off the mouthparts and leave them in the skin. Wipe the bite area with an antiseptic. If hands have touched the tick during removal, wash them thoroughly with soap and water or an antiseptic, since tick secretions may contain pathogens. #### **Point Source Threats** There are many different potential point source threats that can impact any given deployment. Following are some examples of more common arthropod point source threats and a brief description of their potential impact to military personnel. ## 1. Spiders Spiders, in general, are harmless to people. However, a few species are capable of causing serious damage or death in victims. ## A. Black Widow Spiders Black widow spiders, *Latrodectus* spp. are among the most dangerous spiders in the world. They are normally timid, medium-sized spiders (<1 inch long), and shiny black in color. The abdomens are variously marked with red spots or other shapes. The red hour glass on the Southern black widow, *Latrodectus mactans*, is perhaps the most recognized mark among these spiders. Representative of this group of spiders occur worldwide. Other widow spiders of importance occur in the Middle East, Africa, Asia, and throughout the Western Hemisphere. Other examples include the Brown Widows (cosmotropical, common in the South), Red Widow (Central and southern Florida), and Northern Widow (Northern Florida to southern Canada). These widow spiders should be considered moderately dangerous. Black widows normally will not bite unless provoked or contacted by accident. Toxicity of the venom is highly variable depending on the species. - Bites are not very painful and may not be felt initially, or there may be slight localized reddening and swelling. However, envenomizations usually result in severe muscular pain, rigid "boardlike" abdominal cramping, tightness of the chest, difficulty breathing, and nausea. - Black widow bites can be variously misdiagnosed as ruptured ulcer, acute appendicitis, renal ulcer, or food poisoning. - Mortality rate can be 4-5% without treatment. - Antivenin is available and useful if used within 3 hours after envenomization - -Treat symptoms that may develop. ## **B.** Brown Recluse Spiders Brown recluse spiders, *Loxosceles* spp. (recluses or fiddlebacks) are commonly distributed throughout the Americas. The brown recluse, *Loxosceles reclusa*, is perhaps the most recognized member of this group. The fiddle-shaped mark on the cephalothorax, long legs and sleek, brown coloration are characteristic of this group. - The brown recluse bite is not particularly painful and may not be felt at all. Multiple bites in a single attack are not uncommon. - The venom is necrotic, and destroys the tissues of the victim. However, not all bites cause necrosis and the extent of necrosis is highly variable among victims ranging from a small "pimple" to severe "craters" that may take months to heal. #### C. Tarantulas Tarantulas are widely feared, but they are not considered to be dangerous. Their bites are similar to a bee or wasp sting. Their fangs are quite large approaching the size of a pair of large needles and bites are quite painful. #### 2. Scorpions Scorpions have painful stings and several species can be deadly to humans. Generally, small species with slender claws are the most dangerous, whereas larger species with big claws tend to be less venomous -- however, untrained personnel should never attempt to gauge the danger potential of scorpions based on size alone. - Most areas of the world have one or more species of particularly dangerous scorpions. - In Chihuahuan and Sonoran deserts of North America and Mexico, there are only a few dangerous species of scorpion. Stings from these species typically do not swell or redden. Those of most other scorpions in North America do one or both. ## 3. Honeybee Honeybee stings kill more people annually around the world than poisonous snakes. Bee
stings are painful, but, for most people, that is the only effect. Others however, can have an allergic reaction to the sting and can die from anaphylactic shock. A single bee sting can result in death. Deaths caused by honeybee stings are due to anaphylactic shock. An initial sting sensitizes the body's immune system, a subsequent sting, which may occur years later, causes shock and sometimes death. - Africanized honey bees are becoming more widely distributed in the United States since crossing the border from Mexico in the early 1990s. These bees are more aggressive, attack in larger numbers and pursue further, but their venom has no more toxicity than "tamer" races of honey bees. - If you are "investigated" by a honey bee, do not antagonize it. This could cause the bee to sting and release an "alarm pheromone" which signals other bees to attack. - If attacked, literally "run for your life"-- get indoors, in a vehicle, tent, any kind of shelter, if possible, and if not, run through brush in a zig-zag pattern to disorient the bees. - Honey bee stingers are barbed and they, along with the attached venom gland, will remain imbedded in the skin because they are pulled from the bees abdomen following the attack. As long as the stinger remains inserted in the skin, the venom gland will continue to pump venom into the host until the supply is exhausted. To prevent this from occurring, the stinger(s) should be removed as quickly as possible using a straight, sharp edge such as a fingernail, credit card, knife blade or similar tools. Never attempt to remove a stinger with the fingertips as this may actually force more venom into the victim. #### 4. Fire Ants Fire ants in the southern United States and southward through South America can be a severe problem because of their unusually large numbers and potent venom. - Their venom is necrotic, like that of the brown recluse spider, but not as potent. Characteristically, a blister forms, the liquid within solidifies and when the blister goes away there is a small pit that may persist several weeks. Normally one does not get just one fire ant sting, and the stings are often quite numerous, because they swarm their victim and release a chemical signaling others to sting, often overwhelming their victim as a result. ## 5. Wasps and Hornets Wasps and hornets are present in virtually all areas of the world except the poles. They resemble each other in appearance, and in having painful stings. Unlike honeybees, wasps and hornets have straight stingers and they can sting multiple times. Most stings caused by wasps and hornets only cause pain and are more a nuisance than anything else, and are rarely fatal. #### 6. Centipedes Centipedes normally are harmless, but larger species are capable of inflicting painful itching "bites." The "bite is actually produced by the first pair of legs which are modified into claws capable of injecting venom. Centipede "bites" have a characteristic appearance, a series of paired puncture wounds caused by the centipede "chewing" with its poison claws to inject poison. #### 7. Chiggers Chiggers are small mites, which insert their mouthparts into pores and inject their saliva. This affects the surrounding cells and causes intense and long-lasting itching. They will characteristically crawl up the body until they reach an area constricted by clothing (sock top, underwear band, etc.) and feed in that area. Throughout Asia, chigger mites are capable of transmitting scrub typhus. #### 8. Scabies Scabies mites also cause severe and very long-term itching. The mites burrow beneath the skin surface and live out their life cycles there. Scabies is spread by dermal contact, and they can be found on most parts of the body but most commonly on hands, feet, groin, folds of buttocks and under breasts. The rash caused by scabies is very easy to detect. Scabies may lead to secondary infection if scratched with dirty fingernails (all bites can he infected this way). ## 9. Biting Bugs Biting bugs, including wheel bugs, giant water bugs, backswimmers, bed bugs, (*Cimex lectularius*) can inflict very painful bites with their piercing-sucking mouthparts; some can inject non-lethal toxic venom. The pain stops spontaneously in one to four hours. Although such bites are not life-threatening, severe psychological distress may result. #### 10. Blister Beetles Blister beetles are not a severe pest in terms of pain and suffering, but they can inflict fairly serious lesions. - Blister beetles are soft- bodied beetles 1/4 to 1 inch long, in various colors and color patterns, with a well-defined "neck" and "shoulders." - When crushed against skin, they release a substance that causes a large, painless blister or vesicle. The lesion requires careful management and there is danger of secondary infection. If a blister ruptures additional blistering may occur where the fluid touches the skin. Thus, scratching can lead to extensive damage in some individuals. #### 11. Urticating insects Urticating insects, primarily caterpillars that have hollow hairs filled with poison can be encountered around the world. When contacted by humans, hairs embed, break off, and release venom. Venom causes local and sometimes systemic reaction. This produces an urticarial rash. An example is the puss caterpillar. - The lesion from puss caterpillar contact often looks like an outline of the caterpillar. Stings are extremely painful, and the victim may be sick for 2 or 3 days. Some require overnight hospitalization for supportive care. - First aid is to remove hairs with adhesive tape -- stick on the area, then pull off. Then cleanse the wound with alcohol. Secondary exposure of patient care providers does occur and medical staff should wear protective gloves and take care not to come into contact with the hairs. ## 12. Head and Body Lice Head and Body Lice have seldom been a problem to troops since World War II, however, the possibility of epidemic typhus is everpresent, especially in refugee situations like those faced during many recent humanitarian assistance deployments. The crab or pubic louse does not vector disease but causes severe itching where it feeds. Proper personnel hygiene and permethrin treated clothing serve to prevent louse infestation among U.S. military forces. #### 13. Fleas Fleas can be a problem in areas where dogs and cats roam free in urban areas, and in "wild" areas where wild rodents and their fleas can be contacted. Fleas normally are not a severe nuisance, but can be when they are present in large numbers. Flea bites feel like a strong pin prick, producing reddening, swelling, itching. Site encampments should be located in areas distant from rodent burrows and their associated fleas. **Tunga fleas** (chigoes) found in tropical areas differ from other fleas in that they burrow into the skin, often under toenails. Chigoes should be removed in a sterile manner to prevent secondary infection, which can lead to autoamputation of the digit under extreme conditions like those encountered in contingency conditions. #### 14. Biting Flies Biting Flies rank among the most annoying insect pests and can be a severe distraction for military members in an operational environment. For example, horseflies and deerflies can cause severe biting trauma. They tear a wound into the flesh with their mouthparts and then lap up the blood -- the bite is very painful. In some areas these flies occur in large numbers, thus making outdoor activities difficult. Stable Flies (or dog flies) are very persistent, painful biters and they occur throughout most of the Americas. Black flies have painful, irritating bites, and because they are fairly strong flyers, they can become a nuisance some distance from breeding sites. Sand flies, although small in size, have very irritating bites. Biting midges (no-see-ums, sand gnats) arguably are the most irritating of all the small flies that feed on people. They occur periodically, at certain times of the day, but can drive people inside at those times. Some people become very allergic to no-see-um bites and experience reactions that resemble the lesions produced from contact with blister beetle. Mosquitoes can cause serious annoyance problems in addition to spreading diseases, and their bites can produce itchy wheals that can become secondarily infected. Tsetse flies can inflict painful bites in addition to being vectors of African sleeping sickness, and they can pose a significant threat to force health during deployments to central Africa ### 15. Allergens Allergens originating from arthropods can cause a multitude of problems. The tussock moth is a hairy caterpillar whose hairs are not venomous but when molting in large numbers, hairs are shed and may be ingested, inhaled, or rubbed into skin, causing severe allergic "hay fever" symptoms. #### **References and information sources:** Some important published references about vector-borne diseases, their vectors, distributions and prevention include: #### **Military Publications:** 1966. Poisonous snakes of the world, a manual for use by U.S. amphibious forces. NAVMED P-5099, BUMED, Department of the Navy, U.S. Govt. Print. Off., Washington, DC. 212 pp. 1991. Technical Guide (TG) 138. Guide to commensal rodent control. U.S. Army Environmental Hygiene Agency (USAEHA), Aberdeen Proving Ground (APG), MD. 91 pp. This item (in color) can be reached at: www.afpmb.org - select "Publications etc."; then select "Literature Retrieval System" (LRS) = the next to last line on the subpage; then select "Advanced Search"; then enter the LRS Accession No. "181762". 1991. Venomous snakes of the Middle East. AFMIC, Fort Detrick, MD. DST-1810S-469-91, 168 pp. 1995. USACHPPM TG 196. Guide to poisonous and toxic plants. U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM), APG, MD. 77 pp. Regional Disease Vector Ecology Profiles (DVEP)s. AFPMB. http://www.afpmb.org/pubs/dveps/dveps.htm
2009. TG 36. Personal protective techniques against insects and other arthropods of military significance. AFPMB. 61 pp. http://www.afpmb.org/coweb/guidance_targets/ppms/TG36/TG36.pdf 2006. Field Guide to venomous and medically important invertebrates affecting military operations: Identification, biology, symptoms, treatment. Version 2.0, 31 July 2006. Bowles, D., and J. Swaby (eds). Go to: http://www.afpmb.org/pubs/Field Guide/field guide.htm. 2006. USAF School of Aerospace Medicine. 2006. "United States Air Force Guide to Operational Surveillance of Medically Important Vectors and Pests "Operational Entomology", Version 2.1, 15 Aug. 2006. 116 pp. (available via the AFPMB website at: http://www.afpmb.org/coweb/guidance_targets/vector_and_pestcontrol/Operation_Surveillance_Guide.pdf) 2008. TG 24. Contingency pest management guide. AFPMB, 36 pp. (May). ## **Non-Military Publications:** Baker, E., T. Evans, D. Gould, W. Hull, and H. Keegan. 1956. A Manual of Parasitic Mites of Medical or Economic Importance. NPCA, Dunn Loring, VA, [reprinted – 1967, by Henry Tripp, Woodhaven, NY]. 170 pp. Balashov, Yu. S. 1972. Bloodsucking ticks (Ixodoidea) - vectors of diseases of man and animals. Bull. Entomol. Soc. Amer. 8: 161 - 376. Foote, R., and D. Cook. 1959. Mosquitoes of medical importance. USDA Handbook No. 152, USDA, ARS, Washington, DC. 158 pp. Goddard, J. 2007. 5th ed. Physician's guide to arthropods of medical importance. CRC Press, Boca Raton, FL. 457 p. (plus a complete digital version on an enclosed CD) Halstead, B. 1988. 2nd ed. Poisonous and Venomous Marine Animals of the World. Darwin Press, Inc., Princeton, NJ. 288 pp. Heymann, D. (ed.) 2009. 19th ed. Control of Communicable Diseases Manual. Amer. Public Health Assn., Washington, DC. 736 pp. Horsfall, W. 1955. Mosquitoes. Their bionomics and relation to disease. Ronald Press, New York, NY. 723 pp. [1972. Facsimile Edition, by Hafner Publ., New York, NY.] James, W. 1989. Know your poisonous plants, Poisonous plants found in field and garden. Naturegraph Publishers, Inc., Happy Camp, CA. 99 pp. Keegan, H. 1980. Scorpions of Medical Importance. Univ. Press of Mississippi, Jackson, MS. 140 pp. Kingsbury, J. 1972. Deadly harvest, A guide to common poisonous plants. Holt, Reinhart, & Winston, New York, NY. 128 pp. Lawyer, P.G. and P.V. Perkins. 2000. Leishmaniasis and trypanosomiasis. Chapter 8 In: Medical Entomology. B. Eldridge & J. Edman (eds.). Kluwer Academic Publ., Norwell, MA. Lewis, W. 1977. Medical Botany: Plants affecting man's health. John Wiley & Sons, New York, NY. 515 pp. Mullen, G., and L. Durden (eds.). 2009. 2ed. Medical and Veterinary Entomology. Elsevier, Burlington, MA. 637 pp. Munstermann, L. 2005. Phlebotomine sand flies, the Psychodidae. Chap. 12, pp. 141-151, In: Biology of Disease Vectors. 2 ed. (W. Marquardt, ed.). Elsevier Academic Press, Burlington, MA. 785 pp. O'Shea, M. 2005. Venomous Snakes of the World. New Holland Publishers, Ltd., London, UK. 160 pp. Peters, W. 1992. A Color Atlas of Arthropods in Clinical Medicine. Wolfe Publishing, Ltd., London, UK. 304 pp. Russell, F. 1983. Snake Venom Poisoning. Scholium Internat'l, Inc., Great Neck, NY. 562 pp. Service, M. 1993. 2nd ed. Mosquito ecology field sampling methods. Chapman & Hall, New York, NY. 988 pp. Sprawls, S., and B. Branch. 1995. The Dangerous Snakes of Africa. Ralph Curtis Publ., Inc., Sanibel Island, FL. 192 pp. Tiroumourougane1, SV., P. Raghava, S. Srinivasan. 2002. Japanese viral encephalitis. Postgrad Med J 2002;78:205-215. Warrell, D., and H. Gilles. (eds.). 2002. 4th ed. Essential Malariology. Arnold Publ., New York, NY. 348 pp. World Health Organization (WHO). 2006. International meeting on preventing and controlling plague: The old calamity still has a future. Weekly Epidem. Rec., 81(28): 278-284. WHO, Geneva, Switzerland. http://www.who.int/wer" (14 July 2006). ### 162 Entomology Review World Health Organization. 2008. Scientific Working Group Report on Dengue. 1-5 October 2006. WHO, TDR/SWG/08, Geneva, Switzerland. 116 pp.; go to: www.who.int/tdr. World Health Organization. 2008. Global programme to eliminate lymphatic filariasis. WHO Weekly epidemiological record, Nos. 37/38, 2008,83: 333-348 (12 Sept. 2008). # **Pathology** With the frequency of world travel, immigration and refugee populations today, parasitic infections present a growing problem in many areas of the world. A primary concern of health care facilities is the control of parasitic diseases. A successful program for the treatment, control, or eradication of these parasitic infections cannot be realized unless the diagnostic forms of these organisms are rapidly and accurately recovered and identified in the medical laboratory. - a. Proper collection and handling of specimens essential to ensure parasites will be recovered. - b. Old, inadequate or poorly preserved specimens of limited value and may lead to inaccurate results. - c. Some medications may interfere with examination - Some examples are antacids, antidiarrheal compounds and some antibiotics - d. All specimens should be labeled according to local SOP - Minimum information needed for labeling would be last name, first name, and full social security number. - e. Fecal specimens are collected in clean, wide mouthed containers that have a tight-fitting seal. - 1) The container does not have to be sterile - 2) Collect sample directly into container to avoid contamination - 3) Some contaminants such as urine and water may destroy organisms or may contain free living organisms. Figure 1: Fecal specimen container <u>NOTE</u>: There are several ways to collect the specimen while avoiding contamination. For example, the patient may initially pass the specimen into a bedpan, plastic trash bag, or newspaper and then transfer a representative portion to the specimen container. - f. Several stool examinations are necessary before parasitic infection can be ruled out. - g. Timely processing of samples is very important - 1) Specimens can be refrigerated at 3-5 degrees C for no more than 24 hours - 2) If specimen cannot be examined within the recommended time frame, it should be preserved in a suitable preservative <u>NOTE</u>: Stool specimens should **NEVER** be frozen or placed in an incubator Figure 2: Stool specimen preservation ## **Stool Specimen Preservation** **NOTE**: Most laboratories use two vial systems (PVA/Formalin) available from commercial manufacturers - a. Polyvinyl Alcohol (PVA) - 1) Excellent preservative for the morphologic features of intestinal protozoa - b. Formalin preserved specimens - 1) 10% aqueous formalin best for preparation of most organisms - 2) 5% formalin-saline solution adequately preserves protozoan cysts, helminth eggs and larvae Figure 3: Stool preservation kit <u>NOTE</u>: If the zinc sulfate procedure is to be performed on specimens preserved in formalin, it will be necessary to adjust the specific gravity of the zinc sulfate solution (1.18 to 1.20 - c. Merthiolate-Iodine Formalin (MIF) Preparation - 1) A combination preservative and stain for fecal specimens - 2) Especially useful in field surveys - 3) Recovery of intestinal protozoa, helminth eggs and larvae from temporary wet mount preparations <u>NOTE</u>: Always utilize local SOP or package inserts for instructions on how to use any specimen preservative. #### Macroscopic examination of stool specimen - a. Consistency of Stool Specimen hard, soft or liquid - b. Color Normal, black, red, gray or chalky - c. Gross blood Blood present in large amounts - d. Mucus visible white patches on the stool specimen (should be reported if in excess) - e. Occult blood Blood present in trace amounts - 1) Additional testing need for the detection of occult blood - a) Guaiac test - b) Hemoccult test Figure 4: Hemoccult Test Figure 5: Hemoccult Test <u>NOTE</u>: The fecal specimen should be observed for the presence of adult helminthes or segments of adult tapeworms, which may occasionally be found on the surface of the sample. #### **Microscopic Examination** - a. Some material may be mistaken for parasites. These objects are often referred to as artifacts. - 1) Examples are animal or plant hair, starch or pollen granules Figures 6 and 7: Materials that may be mistaken for parasites: Fat Globule (left) and Plant Cell (right) - b. Most widely used procedures for examination of fresh and preserved fecal specimens - 1) Direct wet smears - 2) Flotation or sedimentation concentration procedures - 3) Preparation of permanent-stained smears - c. Direct Wet Mounts - 1) Purpose recommended for the detection of motile trophozoites from fresh fecal specimens - 2) This method is the simplest method because limited materials are needed #### **Procedure** - Add on drop of saline to a clean microscope slide - Obtain specimen on the tip of an applicator stick - Mix the specimen and saline into a uniform suspension - Place cover slip over the preparation - Density should be thing enough so that fine print can be read through it <u>NOTE</u>: Intestinal parasites are readily found in direct smears when present in large quantities. However, in most cases, concentration is required for the detection of these parasites. When properly performed, concentration techniques are more reliable by insuring a higher recovery for protozoa and helminthes. Figure 8: Protozoa species ## **Capillary Puncture for the Recovery of Blood Parasites** **NOTE**: Please refer to figure A-1 on page 32 in the Malaria Section - a. A minor surgical procedure, therefore, aseptic technique is a must and all equipment must be sterile - b. Preferred method of collection when only a small amount of blood is required - c. Simplest method of obtaining blood when making slides for the study of *Plasmodium* spp and other blood parasites - 1)
Procedure - a) Sites - (1) Finger preferably ring finger - (2) Ear lobe of the ear (has higher concentration of white blood cells) - (3) Heel used on newborn infants - b) Finger Puncture - (1) Warm puncture site to assure good circulation of blood - (2) Cleanse the site to be punctured with alcohol soaked gauze to remove dirt and skin debris - (3) Let alcohol air dry - (4) Hold patient's finger between the thumb and index finger while puncturing and collecting blood - (5) Do not touch puncture site - (6) Puncture the skin by using a quick, firm stroke of the lancet - (7) Collect blood for smears or tests being performed - (8) Apply pressure to the wound using a sterile gauze pad or apply a bandage - c) Precautions - (1) Wipe away the first drop, then place collecting utensils into the blood; do not touch the skin - (2) Avoid squeezing finger near the puncture site (it may shut off the blood supply and introduce tissue fluid) - (3) Have patient look away during finger stick to prevent a reflex action of pulling the arm - (4) Dispose of the blood lancets immediately in a proper receptacle (sharps container) # Appendices ## **Medical Teleconsultation** Get a second opinion tele-consult from medical specialists by submitting a non-secure email message with relevant attachments (JPEG, ECG, ect.): #### **Teleconsultation Format:** - Used by deployed healthcare professionals - * Physician, PA, Nurse, SF/DMT, Medic - No Patient identifying information - No classified information - Patient demographics: - * Age, Branch of Service, Location - Duration of Problem - Symptoms Now - * Getting better? Worse? Staying same? - Previous treatment & outcome/effectiveness - Test & results - Your Diagnosis/Differential Diagnosis - Limitations to care for patient - * Medications? Procedures? Evacuation? - Attachments - * Digital images, scanned EKG - * Lab findings, Radiographs - Include Physician in email - Consultation answered 7 days/week #### **Consultations with established contact groups:** Burn Trauma: <u>burntrauma.consult@us.army.mil</u> Cardiology: cards.consult@us.army.mil **Dermatology**: <u>derm.consult@us.army.mil</u> Infectious Diseases: id.consult@us.army.mil Nephrology: nephrology: nephrology.consult@us.army.mil Ophthalmology: eye.consult@us.army.mil Pediatrics: picu.consult@us.army.mil Pediatric Intensive Care: picu.consult@us.army.mil Preventative Medicine/Occupational Medicine: pmom.consult@us.army.mil Rheumatology: rheum.consult@us.army.mil Toxicology: toxicology.consult@us.army.mil Internal Medicine: im.consult@us.army.mil Neurology: neuron.consult@us.army.mil Orthopedics and Podiatry: ortho.consult@us.army.mil Urology: <u>urology.consult@us.army.mil</u> Microbiology: microbiology.consult@us.army.mil Other specialties as requested include: Allergy, Flight Medicine, Endocrinology, EENT, Gastroenterology, General Surgery, Hematology, Legal, Neurosurgery, Nutrition, OB-GYN, Oncology, Oral Pathology, Pharmacy, Plastic Surgery, Pulmonary Diseases, Psychiatry, Radiology, Speech Pathology, and Vascular Surgery For consultations for all other specialties email: Mr. (LTC-Retired) Charles Lappan: chuck.lappan@us.army.mil OTSG Telemedicine Teleconsultation Project Manager #### POC: COL Ron Poropatich, MD Senior Clinical Advisor Telemedicine & Advanced Technology Research Center (TATRC) USAMRMC Liason to the Department of Homeland Security U.S.Army Medical Research and Materiel Command (MRMC) ron.potopatich@amedd.army.mil # Taking pictures through the microscope eyepiece Picture taken with Canon PowerShot A560 through microscope eyepiece Picture from CDC Bench aids Pictures can be taken through microscope eyepieces with ordinary digital cameras that approach the quality of pictures taken with specialized equipment. - Focus the specimen by looking through the eyepiece. - 2. Using the stage controls, place the specimen in the middle of the field of view. This allows you to rest the camera against the lens. There is a lot of trial and error involved in doing this. - Identify several landmarks next to the parasite of interest, such as white blood cells, which will make it easier for you to find the parasite again while looking through the camera. - Turn on the camera and turn off the flash. - Rest the camera front lens assembly against the eyepiece and find the sample by looking through the camera. - Zoom in as appropriate.* - 7. Focus the specimen again, looking through the camera while you adjust the microscope. - Take several pictures, changing the focus each time. Whatever you can do to minimize the movement of the camera will improve the sharpness of the picture. *Many cameras have both digital zoom and optical zoom. Optical zoom uses the camera's lenses to magnify the objects in view, while digital zoom uses electronics to magnify the picture obtained by the lenses. Whether the quality of the picture is degraded or improved by using digital zoom will vary from one type of camera to the next. Try taking pictures with and without using digital zoom. ## **Useful Websites** #### **Course website:** http://wrair-www.army.mil/OtherServices TropicalMedicine.aspx The course website includes ALL of the material presented in this manual as well as other course materials and helpful information. # WRAIR Homepage http://wrair-www.army.mil/ Some websites that contain details about vector-borne human diseases, their vectors, distributions and prevention include: The Acarological Society of Amer. (ASA) web site info/ACARI (mites & Ticks) www.Acariweb.com/ASA/ AFPMB website: www.afpmb.org (some suggested specific references) http://www.afpmb.org/pubs/Field Guide/field guide.htm http://www.afpmb.org/pubs/Living_Hazards/living_hazards.htm <u>http://www.afpmb.org/dveps/dveps.htm</u> (then select the ones of interest) $\underline{http://www.afpmb.org/coweb/guidance_targets/ppms/TG36/TG36.pdf}$ American Arachnological Society at: www.americanarachnology.org The CIA Factbook: http://www.cia.gov/library/publications/the-world-factbook/geos/uv.html U.S. Centers for Disease Control and Prevention (CDC): www.cdc.gov (search by topic) The U.S. CDC, Travelers' Health, "searchable" on-line reference (Yellow Book, 2008) is at: http://wwwn.cdc.gov/travel/contentYellowBookAbout.aspx Link to NCMI website (MEDIC, copy/info): https://www.intelink.gov/ncmi/medic_downloadable.php Link for the New Reptile Database: http://www.reptiliaweb.org Pan Amer. J. Publ. Hlth in e-format 4 free & open access at: http://journal.paho.org & http://www.scielo.org The Scorpion Files at: http://www.ub.ntnu.no/scorpion-files/ Toxinology website, Adelaide, Australia at: www.toxinology.com Walter Reed Biosystematics Unit at: www.wrbu.org The World Health Organization (WHO): www.who.int WHO Pesticide Evaluation Scheme (WHOPES): http://www.who.int/whopes WHO searchable Snake/Antivenin Database (still under development): http://apps.who.int/bloodproducts/snakeantivenoms/database/ #### Other websites: Mycology photos: www.doctorfungus.org CDC Parasite pages: http://www.cdc.gov/parasites/ Shipping of Microbiology Specimens http://www.cdc.gov/nczved/divisions/dvbid/specimen/bacterial_shipping.html#shipping http://www.mamc.amedd.army.mil/pathology/TestIndex.htm Biosafetly in Microbiological and Biomedical Laboratories (BMBL) 5th Edition http://www.cdc.gov/biosafety/publications/bmbl5/index.htm MEDLINET (AMEDD Virtual Library): https://medlinet.amedd.army.mil/ USUHS Homepage: http://www.usuhs.mil/ GEIS Homepage: http://www.geis.fhp.osd.mil/ National Center for Medical Intelligence (NCMI) https://www.intelink.gov/ncmi/index.php DoD Clearance Guide for travel https://www.fcg.pentagon.mil/ ## **Useful Websites for Malaria:** #### Malaria diagnostics CDC DPDx http://www.dpd.cdc.gov/dpdx/html/malaria.htm #### **WHO** http://www.who.int/malaria/publications/microscopy/en/index.html The following books can be downloaded in PDF form from the WHO Website: *Basic Malaria Microscopy. Part I. Learner's Guide.* 2nd ed. World Health Organization, Geneva. 2010 *Basic Malaria Microscopy. Part II. Tutor's Guide.* 2nd ed. World Health Organization, Geneva. 2010 Royal Perth Hospital: http://www.rph.wa.gov.au/malaria.html This site includes a 90-picture interactive training program for *Plasmodium* species identification. Johns Hopkins Malaria Research Institute: http://malaria.jhsph.edu/ Evaluation of Malaria Rapid Diagnostic Tests WHO http://www.wpro.who.int/sites/rdt ## Microscopy Olympus http://www.olympusmicro.com/ Abramowitz, M.: *Microscope. Basics and Beyond.* Olympus America Inc., Melville, NY. 2003. This book can be downloaded free as a 20-MB PDF file from the following Website: http://micro.magnet.fsu.edu/primer/index.html ## Diagnosis of Malaria Bench Aids for Malaria Microscopy. 3rd ed. World Health Organization, Geneva. 2010. Available in the U.S. from Stylus Publishing, Herndon, VA. A scanned version of the second edition is available free online at: http://www.who.int/malaria/publications/atoz/9241545240/en/ Frequently Used NSN's | Consolidated Field Sanitation Kit | ITEM | NSN | UI | REMARKS |
--|--|----------|------------|--------------------| | Consolidated Field Sanitation Kit 578-4352 set | 11 - 141 | | UI UI | KLWAKKS | | Bednet, Pop-pop up, Coyote Brown | Consolidated Field Sanitation Kit | 1 | set | | | USE CODE 26 (Combo of 2B and 2L) 518-7310 ea CL IX (SARSS) | | | - 551 | Must order through | | Insect Repellent w/sunscreen 288-2188 | | | 02 | | | w/sunscreen) 288-2188 tubes/bx Insect Repellent, personal application (DEET) 6840-01-284-3982 tubes/bx Insect Repellent, Clothing Application (IDA Kit) 4840-01-345-0237 12 kits/bx Insect Repellent, Aerosol (for uniforms or bed nets) 6840-01-3278-1336 12 kits/bx Insect Repellent, Clothing Application (Concentrated Liquid) 6840-01-334-2666 12 btl/bx Insecticide, d-Phenothrin, Aerosol 412-4634 cans/bx Insecticide, d-Phenothrin, Aerosol 4840-01-400 tabs Insecticide, d-Phenothrin, Aerosol 441-4719 ea 6840-01-40 441-4719 ea 6840-01-40 12 cans/bx Was Freeze 459-2443 tub (5 lb) Revenge Fly Catchers (Hanging sticky 1940-01-240-01-240-01-240-01- | | | | CL IX (SANSS) | | Insect Repellent, personal application (DEET) | | | . – | | | DEET 284-3982 | | | | | | Insect Repellent, Aerosol (for uniforms or bed nets) | (DEET) | 284-3982 | tubes/bx | | | Insect Repellent, Aerosol (for uniforms or bed nets) | Insect Repellent, Clothing Application | 6840-01- | | | | or bed nets) 278-1336 cans/bx Insect Repellent, Clothing Application
(Concentrated Liquid) 6840-01-
334-2666 12 btl/bx Insecticide, d-Phenothrin, Aerosol 6840-01-
412-4634 1 unit 40
table Demand Pestab 431-3357 tabs Sprayer, Pesticide, 2 gal SS tank 6840-00-
6840-00-
459-2443 1 unit 40
tabs Wasp Freeze 459-2443
459-2443 cans/bx Max Force Granular Fly Bait' 518-5807 tub (5 lb) Revenge Fly Catchers (Hanging sticky tape) 3740-01-
240-6170 case Flies Be Gone Fly Bags 523-0708 cs/50 3740-01-
Victor Fly Strips (sticky traps) 3740-01-
412-9371 cs/144 Victor Fly Strips (sticky traps) 3740-01-
412-9371 bx/24 Mouse snap traps 252-3384 pkg/6 Ontainer, Rodent Bait Plastic (Rat) 3740-01-
481-1312 bx/6 Rodent Bait (Talon G pellets in small bags) 6840-01-
3740-01-
240-6170 bucket Trap, Rodent Glue 240-6170
240-6170 bx/24 Vec-Test Malaria Rapid Assay (looking for malaria in the mosquito) 6650-01-
551-5327 kt < | | | | | | Insect Repellent, Clothing Application (Concentrated Liquid) 334-2666 12 btl/bx 334-2666 12 btl/bx 6840-01- 12 12 12 134-2634 234-2634 234-2634 234-2634 234-2635 234-26 | | | | | | Concentrated Liquid 334-2666 12 btl/bx 6840-01- 12 12 12 12 12 12 12 | | | cans/bx | | | Insecticide, d-Phenothrin, Aerosol | | | 10 htl/hy | | | Insecticide, d-Phenothrin, Aerosol | (Concentrated Liquid) | | | | | Demand Pestab | Insecticide d-Phenothrin Aerosol | | . – | | | Demand Pestab | medalada, a i mendamin, neredei | | | | | Sprayer, Pesticide, 2 gal SS tank | Demand Pestab | | | | | Max Force Granular Fly Bait | | | | | | Wasp Freeze 459-2443 cans/bx Max Force Granular Fly Bait` 518-5807 tub (5 lb) Revenge Fly Catchers (Hanging sticky tape) 3740-01-240-6170 case Jardo-01-240-6170 240-6170 case Jardo-01-3740-01 | Sprayer, Pesticide, 2 gal SS tank | 641-4719 | ea | | | Max Force Granular Fly Bait'
518-5807 tub (5 lb) | | | | | | Max Force Granular Fly Bait` 518-5807 tub (5 lb) Revenge Fly Catchers (Hanging sticky tape) 3740-01-240-6170 case Flies Be Gone Fly Bags 523-0708 cs/50 3740-01-Victor Fly Strips (sticky traps) 412-9371 cs/144 40-01-Insect trap , Gold Stick fly trap 542-9591 bx/24 40-01-Insect trap , Gold Stick fly trap 542-9591 bx/24 523-384 pkg/6 3740-00-2 Container, Rodent Bait Plastic (Rat) 481-1313 bx/6 3740-01-Container, Rodent Bait Plastic (Mouse) 481-1312 bucket Rodent Bait (Talon G pellets in small bags) 6840-01-508-6085 bucket 3740-00-2 260-1398 3740-01-709-709-709 Rat snap traps 260-1398 3740-01-709-709-709 Vec-Test Malaria Rapid Assay (looking for malaria in the mosquito) 6650-01-709-709-709-709-709-709-709-709-709 Wall Mount, 80 Watt Fly Light (food service friendly) 3740-01-709-709-709-709-709-709-709-709-709-709 | Wasp Freeze | | cans/bx | | | Revenge Fly Catchers (Hanging sticky tape) 3740-01- 240-6170 case 3740-01- Flies Be Gone Fly Bags 523-0708 cs/50 3740-01- Victor Fly Strips (sticky traps) 412-9371 cs/144 3740-01- Insect trap , Gold Stick fly trap 542-9591 bx/24 Mouse snap traps 252-3384 pkg/6 3740-01- Container, Rodent Bait Plastic (Rat) 481-1313 bx/6 3740-01- Container, Rodent Bait Plastic (Mouse) Rodent Bait (Talon G pellets in small bags) 508-6085 bucket 3740-01- Trap, Rodent Glue 240-6170 bx/24 Vec-Test Malaria Rapid Assay (looking for malaria in the mosquito) Wall Mount, 80 Watt Fly Light (food service friendly) Wall Mount, 40 Watt Fly Light 286-2362 286-2362 3740-00- 286-2362 286-2362 3740-00- | | | | | | tape) | | | tub (5 lb) | | | 3740-01- 523-0708 cs/50 3740-01- | , , , , , | | 0000 | | | Section Strick | tape) | | Case | | | 3740-01- | Flies Be Gone Fly Bags | | cs/50 | | | Service friendly | The Bo Conorty Bago | | 00,00 | | | Service friendly | Victor Fly Strips (sticky traps) | 412-9371 | cs/144 | | | Mouse snap traps 252-3384 pkg/6 | | 3740-01- | | | | Mouse snap traps 252-3384 pkg/6 3740-01- 481-1313 bx/6 3740-01- 481-1313 bx/6 3740-01- 481-1312 Container, Rodent Bait Plastic (Mouse) 481-1312 Rodent Bait (Talon G pellets in small bags) 508-6085 bucket 508-6085 bucket 3740-00- Rat snap traps 260-1398 3740-01- 240-6170 bx/24 Vec-Test Malaria Rapid Assay (looking for malaria in the mosquito) 551-5327 kt Wall Mount, 80 Watt Fly Light (food service friendly) 286-2361 ea 3740-01- Wall Mount, 40 Watt Fly Light 286-2362 ea 3740-00- | Insect trap , Gold Stick fly trap | | bx/24 | | | 3740-01- | | | | | | Container, Rodent Bait Plastic (Rat) Container, Rodent Bait Plastic (Mouse) Rodent Bait (Talon G pellets in small bags) Rat snap traps Container, Rodent Bait Plastic (Mouse) Rat snap traps Container, Rodent Bait Plastic (Mouse) 8481-1312 6840-01- 508-6085 bucket 3740-00- Rat snap traps Container, Rodent Glue 260-1398 Trap, Rodent Glue Container, Rodent Glue 240-6170 240-6170 240-6170 bx/24 Vec-Test Malaria Rapid Assay (looking for malaria in the mosquito) Wall Mount, 80 Watt Fly Light (food service friendly) Service friendly) Wall Mount, 40 Watt Fly Light 286-2362 ea 3740-00- | Mouse snap traps | | pkg/6 | | | 3740-01- | Ocatainan Dedant Beit Bleetie (Det) | | I10 | | | Container, Rodent Bait Plastic (Mouse) Rodent Bait (Talon G pellets in small bags) 8840-01- 508-6085 bucket 3740-00- 260-1398 Trap, Rodent Glue 7740-01- 240-6170 bx/24 886-2361 ea 7740-01- 286-2362 ea 7740-00- | Container, Rodent Bait Plastic (Rat) | | DX/6 | | | Rodent Bait (Talon G pellets in small bags) 6840-01-508-6085 bucket | Container Rodent Bait Plastic (Mouse) | | | | | bags) 508-6085 bucket 3740-00- 260-1398 Trap, Rodent Glue 240-6170 bx/24 Vec-Test Malaria Rapid Assay (looking for malaria in the mosquito) 551-5327 kt Wall Mount, 80 Watt Fly Light (food service friendly) 286-2361 ea Wall Mount, 40 Watt Fly Light 286-2362 ea 3740-00- | | | | | | 3740-00- 260-1398 3740-01- 240-6170 bx/24 Vec-Test Malaria Rapid Assay (looking for malaria in the mosquito) 551-5327 kt Wall Mount, 80 Watt Fly Light (food service friendly) 286-2361 ea 3740-01- 286-2362 ea 3740-00- | | | bucket | | | 3740-01- 240-6170 bx/24 | | | | | | Trap, Rodent Glue 240-6170 bx/24 Vec-Test Malaria Rapid Assay (looking for malaria in the mosquito) 6650-01-551-5327 kt Wall Mount, 80 Watt Fly Light (food service friendly) 3740-01-286-2361 ea Wall Mount, 40 Watt Fly Light 286-2362 ea 3740-00-374 | Rat snap traps | 260-1398 | | | | Vec-Test Malaria Rapid Assay (looking for malaria in the mosquito) 6650-01-551-5327 kt Wall Mount, 80 Watt Fly Light (food service friendly) 3740-01-286-2361 ea Wall Mount, 40 Watt Fly Light 286-2362 ea 3740-00-3740- | | | | | | for malaria in the mosquito) 551-5327 kt Wall Mount, 80 Watt Fly Light (food service friendly) 286-2361 ea 3740-01- 286-2362 ea 3740-00- | | | bx/24 | | | Wall Mount, 80 Watt Fly Light (food service friendly) 3740-01-286-2361 ea 3740-01-286-2362 ea 3740-01-3740-00- | | | l | | | service friendly) 286-2361 ea 3740-01- 286-2362 ea Wall Mount, 40 Watt Fly Light 286-2362 ea 3740-00- 3740-00- | | | Kt | | | 3740-01-
286-2362
ea
3740-00- | | | | | | Wall Mount, 40 Watt Fly Light 286-2362 ea 3740-00- | service menuly) | | ea | | | 3740-00- | Wall Mount 40 Watt Fly Light | | ea | | | | Trail from the tracting Light | | - Ju | | | Fly Swatter 252-3383 pk/12 | Fly Swatter | 252-3383 | pk/12 | | # - 178 - Appendices | Plug, Ear, Hearing Protection, | 6515-00- | | | |---------------------------------------|----------|------------|--------------------| | Universal Size, Disposable, 400s | 137-6345 | pg | | | Purell Instant Hand Sanitizer, 3 oz | 6508-01- | 24 | | | bottle, olive drab | 5355409 | btl/case | | | | 4510-01- | case of | http://www.goclean | | Wag Bag Waste Kit | 485-0760 | 100 | waste.com/wag-bag | | <u> </u> | 4510-01- | case of | http://www.goclean | | Wag Bag Waste Kit | 485-0759 | 12 | waste.com/wag-bag | | | 100 0100 | | http://www.goclean | | | 4510-01- | | waste.com/products | | Go Anywhere Portable Toilet | 485-0736 | 1 ea | #pop | | Co / inj where i ortable i oliet | 8465-00- | ı cu | прор | | Shower Pail, Collapsible | 935-6649 | ea | | | Shower Fair, Collapsible | 7240-00- | Ca | | | 5 gal Water Can | 089-3827 | 00 | | | 5 gal Water Can | | ea | | | Mioxx Pens (individual water | 4610-01- | | | | purification) | 513-8498 | ea | | | Rubbermaid Orange Drinking Water | 7330-01- | 1 | | | Cooler | 449-2319 | ea | | | | 7360-01- | | | | Hand Washing Station | 480-8487 | ea | | | Chlorination Kit, Water (100 ampules, | 6850-00- | | | | DPD 1 tabs etc) | 270-6225 | kit | | | | 6840-00- | | | | Calcium Hypochlorite, 5 lb bottle | 238-8115 | btl | | | ** | 6840-01- | | | | Calcium Hypochlorite, 6x16 oz bottles | 358-4336 | bx | | | Calcium Hypochlorite, 12 x 3.75 lb | 6840-00- | | | | bottles | 242-4770 | bx | | | | 6810-00- | 2 | | | Calcium Hypochlorite, 16 oz bottle | 255-0471 | btl | | | Calciant Trypoonionic, To 62 Bottle | 6550-08- | Du | | | Chlorine Test Strips | 133-2361 | btl/50 | | | Chlorine rest otrips | 6550-08- | Dti/30 | | | Mater Test String (HACH 0 in 1) | 133-2443 | btl/50 | | | Water Test Strips (HACH 9 in 1) | 133-2443 | DII/30 | | | Water Test Strips (HACH 5 in 1) | | | | | | 6665-01- | | | | Water Test Kit M272 | 134-0885 | ea | | | Paddle Tester, Total Aerobic | 10.000 | | | | Bacteria/Disinfection Control | | pk/10 | www.hach.com | | Paddle Tester, Total Aerobic | | più io | www.naon.oom | | Bacteria/Yeast and Mold | | pk/10 | www.hach.com | | Light ultraviolet, specimen examining | 6530-01- | pk/10 | www.nacn.com | | (hand held black light) | 451-5144 | ea | | | (Harid Heid black light) | | - Ca | | | Water Durification Tableta Ladina | 6850-00- | 00/100 64 | | | Water Purification Tablets, Iodine | 985-7166 | cs/100 btl | | | Respirator, Air Filtering, Infection | 6532-01- | case of | | | Control (N95) | 439-8571 | 120 | | | | 6515-01- | , | | | Mask Respirator N95 | 533-8138 | pkg of 20 | | | | 6550-01- | 12- | http://www.binaxno | | Binax Now Malaria Rapid Assay | 554-8536 | tests/box | w.com/malaria.aspx | | | 6550-01- | 25- | http://www.binaxno | | Binax Now Malaria Rapid Assay | 554-8731 | tests/box | w.com/malaria.aspx | | | | | | | | | 1 | | | | 1 | I | 1 | Stay Alert Gum 8925-01 530-1219 Bx/24